Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285066575> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4285066575 endingPage "555" @default.
- W4285066575 startingPage "543" @default.
- W4285066575 abstract "Blind separation of the sources supported by graphs, i.e., graph signals, is a nascent and challenging Blind Source Separation (BSS) problem. In these cases, along with the statistical independence of the sources, additional dependency information can be interpreted from their graph structure, which provides exploiting different Graph Signal Processing (GSP) tools to improve the separation performance. To the best of our knowledge, in these cases, only GraDe and GraphJADE methods have been proposed to exploit the graph dependencies and/or GSP techniques to improve the separation quality rather than the conventional BSS methods. Despite the significant advantages of these graph-based methods, assuming that the underlying graphs are known is a serious drawback, especially in many real-world applications. To address this issue, in this paper, we propose a Unified objective function for GraphJADE with Graph Learning, namely U-GraphJADE-GL, and use the Block Coordinate Descent (BCD) to optimize it. In our proposed method, along with the separation task, the underlying graphs are learned simultaneously in an efficient manner. We compare the performance of the U-GraphJADE-GL with that of the GraDe with Graph Learning (U-GraDe-GL) and the conventional BSS methods in the BSS task and also analyze the GL performance. Besides, as well as the theoretical and experimental convergence analysis, we derive/state the Cramér-Rao bound (CRB) on the estimation of the mixing and unmixing matrices and also on the attainable Interference-to-Source Ratio (ISR) and compare the asymptotic performance of the proposed method with that of the optimal CRB estimators. To investigate the applicability in real applications, the performance of the proposed method is also compared with that of the abovementioned algorithms for denoising the epileptic Electroencephalogram (EEG) signals and also for the audio speech source separation task. The results show the superiority of the proposed algorithm compared to the other methods in the case of BSS of graph signals with unknown graphs." @default.
- W4285066575 created "2022-07-13" @default.
- W4285066575 creator A5043344648 @default.
- W4285066575 creator A5048845619 @default.
- W4285066575 date "2022-01-01" @default.
- W4285066575 modified "2023-10-14" @default.
- W4285066575 title "A Unified Approach for Simultaneous Graph Learning and Blind Separation of Graph Signal Sources" @default.
- W4285066575 cites W1542577686 @default.
- W4285066575 cites W1596301525 @default.
- W4285066575 cites W1946620893 @default.
- W4285066575 cites W1965308754 @default.
- W4285066575 cites W2005602782 @default.
- W4285066575 cites W2014502281 @default.
- W4285066575 cites W2019502123 @default.
- W4285066575 cites W2040572095 @default.
- W4285066575 cites W2050637571 @default.
- W4285066575 cites W2065156808 @default.
- W4285066575 cites W2080373262 @default.
- W4285066575 cites W2082930519 @default.
- W4285066575 cites W2093285596 @default.
- W4285066575 cites W2099741732 @default.
- W4285066575 cites W2101491865 @default.
- W4285066575 cites W2108384452 @default.
- W4285066575 cites W2110476671 @default.
- W4285066575 cites W2113788396 @default.
- W4285066575 cites W2124757684 @default.
- W4285066575 cites W2130362519 @default.
- W4285066575 cites W2137096596 @default.
- W4285066575 cites W2141224535 @default.
- W4285066575 cites W2142638745 @default.
- W4285066575 cites W2147819896 @default.
- W4285066575 cites W2171878761 @default.
- W4285066575 cites W2299462150 @default.
- W4285066575 cites W2545344914 @default.
- W4285066575 cites W2793980368 @default.
- W4285066575 cites W2796431263 @default.
- W4285066575 cites W2798585159 @default.
- W4285066575 cites W2800129804 @default.
- W4285066575 cites W2804196292 @default.
- W4285066575 cites W2962759781 @default.
- W4285066575 cites W2963384510 @default.
- W4285066575 cites W2964012239 @default.
- W4285066575 cites W3005922524 @default.
- W4285066575 cites W3015852307 @default.
- W4285066575 cites W3067505610 @default.
- W4285066575 cites W3080480234 @default.
- W4285066575 cites W3127260758 @default.
- W4285066575 cites W3142570770 @default.
- W4285066575 cites W3184542807 @default.
- W4285066575 cites W747911303 @default.
- W4285066575 doi "https://doi.org/10.1109/tsipn.2022.3183498" @default.
- W4285066575 hasPublicationYear "2022" @default.
- W4285066575 type Work @default.
- W4285066575 citedByCount "3" @default.
- W4285066575 countsByYear W42850665752023 @default.
- W4285066575 crossrefType "journal-article" @default.
- W4285066575 hasAuthorship W4285066575A5043344648 @default.
- W4285066575 hasAuthorship W4285066575A5048845619 @default.
- W4285066575 hasConcept C11413529 @default.
- W4285066575 hasConcept C120317606 @default.
- W4285066575 hasConcept C127162648 @default.
- W4285066575 hasConcept C132525143 @default.
- W4285066575 hasConcept C154945302 @default.
- W4285066575 hasConcept C157553263 @default.
- W4285066575 hasConcept C2776864781 @default.
- W4285066575 hasConcept C31258907 @default.
- W4285066575 hasConcept C41008148 @default.
- W4285066575 hasConcept C51432778 @default.
- W4285066575 hasConcept C80444323 @default.
- W4285066575 hasConceptScore W4285066575C11413529 @default.
- W4285066575 hasConceptScore W4285066575C120317606 @default.
- W4285066575 hasConceptScore W4285066575C127162648 @default.
- W4285066575 hasConceptScore W4285066575C132525143 @default.
- W4285066575 hasConceptScore W4285066575C154945302 @default.
- W4285066575 hasConceptScore W4285066575C157553263 @default.
- W4285066575 hasConceptScore W4285066575C2776864781 @default.
- W4285066575 hasConceptScore W4285066575C31258907 @default.
- W4285066575 hasConceptScore W4285066575C41008148 @default.
- W4285066575 hasConceptScore W4285066575C51432778 @default.
- W4285066575 hasConceptScore W4285066575C80444323 @default.
- W4285066575 hasLocation W42850665751 @default.
- W4285066575 hasOpenAccess W4285066575 @default.
- W4285066575 hasPrimaryLocation W42850665751 @default.
- W4285066575 hasRelatedWork W1499426273 @default.
- W4285066575 hasRelatedWork W1525473639 @default.
- W4285066575 hasRelatedWork W2107364365 @default.
- W4285066575 hasRelatedWork W2118307209 @default.
- W4285066575 hasRelatedWork W2350743277 @default.
- W4285066575 hasRelatedWork W2358502090 @default.
- W4285066575 hasRelatedWork W2366393042 @default.
- W4285066575 hasRelatedWork W2369018836 @default.
- W4285066575 hasRelatedWork W2799986809 @default.
- W4285066575 hasRelatedWork W4285066575 @default.
- W4285066575 hasVolume "8" @default.
- W4285066575 isParatext "false" @default.
- W4285066575 isRetracted "false" @default.
- W4285066575 workType "article" @default.