Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285079757> ?p ?o ?g. }
- W4285079757 endingPage "225205" @default.
- W4285079757 startingPage "225205" @default.
- W4285079757 abstract "Optical emission spectroscopy from a small-volume, 5 uL, atmospheric pressure RF-driven helium plasma was used in conjunction with Partial Least Squares Discriminant Analysis (PLS-DA) for the detection of trace concentrations of methane gas. A limit of detection of 1 ppm was obtained and sample concentrations up to 100 ppm CH4 were classified using a nine-category model. A range of algorithm enhancements were investigated including regularization, simple data segmentation and subset selection, VIP feature selection and wavelength variable compression in order to address the high dimensionality and collinearity of spectral emission data. These approaches showed the potential for significant reduction in the number of wavelength variables and the spectral resolution/bandwidth. Wavelength variable compression exhibited reliable predictive performance, with accuracy values > 97%, under more challenging multi-session train - test scenarios. Simple modelling of plasma electron energy distribution functions highlights the complex cross-sensitivities between the target methane, its dissociation products and atmospheric impurities and their impact on excitation and emission." @default.
- W4285079757 created "2022-07-13" @default.
- W4285079757 creator A5011581903 @default.
- W4285079757 creator A5030910840 @default.
- W4285079757 creator A5040435646 @default.
- W4285079757 creator A5072148130 @default.
- W4285079757 date "2022-03-07" @default.
- W4285079757 modified "2023-09-26" @default.
- W4285079757 title "Methane detection to 1 ppm using machine learning analysis of atmospheric pressure plasma optical emission spectra" @default.
- W4285079757 cites W1582684391 @default.
- W4285079757 cites W1745618764 @default.
- W4285079757 cites W1787041122 @default.
- W4285079757 cites W1792894298 @default.
- W4285079757 cites W1854093789 @default.
- W4285079757 cites W1924290394 @default.
- W4285079757 cites W1976251851 @default.
- W4285079757 cites W1981736487 @default.
- W4285079757 cites W1985475221 @default.
- W4285079757 cites W1988713715 @default.
- W4285079757 cites W1992483596 @default.
- W4285079757 cites W1996195892 @default.
- W4285079757 cites W2013697761 @default.
- W4285079757 cites W2019627130 @default.
- W4285079757 cites W2030302070 @default.
- W4285079757 cites W2035775306 @default.
- W4285079757 cites W2048638536 @default.
- W4285079757 cites W2050392544 @default.
- W4285079757 cites W2057530817 @default.
- W4285079757 cites W2073503722 @default.
- W4285079757 cites W2074806323 @default.
- W4285079757 cites W2089181989 @default.
- W4285079757 cites W2106314199 @default.
- W4285079757 cites W2115461419 @default.
- W4285079757 cites W2116831373 @default.
- W4285079757 cites W2124438130 @default.
- W4285079757 cites W2140964565 @default.
- W4285079757 cites W2153357396 @default.
- W4285079757 cites W2160986876 @default.
- W4285079757 cites W2296168950 @default.
- W4285079757 cites W2411605049 @default.
- W4285079757 cites W2513386338 @default.
- W4285079757 cites W2518997645 @default.
- W4285079757 cites W2563864022 @default.
- W4285079757 cites W2614519007 @default.
- W4285079757 cites W2615599093 @default.
- W4285079757 cites W2734710772 @default.
- W4285079757 cites W2788559954 @default.
- W4285079757 cites W2796163873 @default.
- W4285079757 cites W2804721881 @default.
- W4285079757 cites W2806356892 @default.
- W4285079757 cites W2864529735 @default.
- W4285079757 cites W2888611683 @default.
- W4285079757 cites W2903190415 @default.
- W4285079757 cites W2904292831 @default.
- W4285079757 cites W2905325973 @default.
- W4285079757 cites W2913894354 @default.
- W4285079757 cites W2918780762 @default.
- W4285079757 cites W2942635952 @default.
- W4285079757 cites W2949527083 @default.
- W4285079757 cites W2949604470 @default.
- W4285079757 cites W2951141375 @default.
- W4285079757 cites W2996306968 @default.
- W4285079757 cites W3003478432 @default.
- W4285079757 cites W3015005785 @default.
- W4285079757 cites W3040645326 @default.
- W4285079757 cites W3041964267 @default.
- W4285079757 cites W3138166141 @default.
- W4285079757 cites W3153960667 @default.
- W4285079757 cites W3177977012 @default.
- W4285079757 cites W4238621261 @default.
- W4285079757 cites W4244894666 @default.
- W4285079757 doi "https://doi.org/10.1088/1361-6463/ac5770" @default.
- W4285079757 hasPublicationYear "2022" @default.
- W4285079757 type Work @default.
- W4285079757 citedByCount "1" @default.
- W4285079757 countsByYear W42850797572023 @default.
- W4285079757 crossrefType "journal-article" @default.
- W4285079757 hasAuthorship W4285079757A5011581903 @default.
- W4285079757 hasAuthorship W4285079757A5030910840 @default.
- W4285079757 hasAuthorship W4285079757A5040435646 @default.
- W4285079757 hasAuthorship W4285079757A5072148130 @default.
- W4285079757 hasBestOaLocation W42850797571 @default.
- W4285079757 hasConcept C105795698 @default.
- W4285079757 hasConcept C106192678 @default.
- W4285079757 hasConcept C113196181 @default.
- W4285079757 hasConcept C120665830 @default.
- W4285079757 hasConcept C121332964 @default.
- W4285079757 hasConcept C1276947 @default.
- W4285079757 hasConcept C148483581 @default.
- W4285079757 hasConcept C153294291 @default.
- W4285079757 hasConcept C154945302 @default.
- W4285079757 hasConcept C178790620 @default.
- W4285079757 hasConcept C185592680 @default.
- W4285079757 hasConcept C200239111 @default.
- W4285079757 hasConcept C30475298 @default.
- W4285079757 hasConcept C32891209 @default.
- W4285079757 hasConcept C33923547 @default.
- W4285079757 hasConcept C41008148 @default.