Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285081856> ?p ?o ?g. }
- W4285081856 endingPage "105933" @default.
- W4285081856 startingPage "105933" @default.
- W4285081856 abstract "Dial-a-ride problems aim to design the least-costly door-to-door vehicle routes for transporting individual users, subject to several service constraints like time windows, service and route durations, and ride-time. In some cases, providers cannot meet the demand and may outsource some requests. In this paper, we introduce, model, and solve the dial-a-ride problem with private fleet and common carrier (DARP-PFCC) that makes it possible to transfer the demand unmet by the provider to mobility-on-demand services and taxis. All outsourced vehicles are assumed to be available at any instant of the day and have unlimited capacity, enabling to satisfy all user requests, particularly during peak times. We implement a branch-and-cut (B&C) algorithm based on an exact method from the literature to solve the DARP-PFCC, and we develop a near parameter-free parallel metaheuristic to handle large instances. Our metaheuristic combines the Biased Random-key Genetic Algorithm (BRKGA) and the Q -learning (QL) method into the same framework (BRKGA-QL), in which an agent helps to use feedback information to dynamically choose the parameters of BRKGA during the search to select the most appropriate configuration to solve a specific problem instance. Both algorithms are flexible enough to solve the classical DARP, and extensive computational experiments demonstrate the efficiency of our methods. For the DARP instances, the B&C proved optimality for 41 of the 42 instances tested in a reasonable computational time, and the BRKGA-QL found the best-known solution for these instances within a matter of seconds. These results indicate that our metaheuristic performs equally well than state-of-the-art DARP algorithms. In the DARP-PFCC experiments on a set of 504 small-size instances, B&C proved optimality for 497 instances, while BRKGA-QL found 452 optimal solutions, totaling 90.94% of the instances solved to optimality. Finally, we present the results for a real case study for the DARP-PFCC, where BRKGA-QL solved very large problem instances containing up to 713 transportation requests. We also derive some managerial analyses to assess the effects of vehicle capacity reduction, for example due to the COVID-19 pandemic, on shared transportation. The results point to the benefits of combining the private fleet and common carriers in dial-a-ride problems, both for the provider and for the users. • We introduce a new DARP by combining private fleet and common carrier (DARP-PFCC). • We design a branch-and-cut algorithm and a parallel metaheuristic for the DARP-PFCC. • Both algorithms obtain excellent results by solving the standard DARP. • We solve real-case scenarios in the context of the DARP-PFCC. • We derive many managerial insights, both concerning cost and service level." @default.
- W4285081856 created "2022-07-14" @default.
- W4285081856 creator A5004964195 @default.
- W4285081856 creator A5006575824 @default.
- W4285081856 creator A5045739924 @default.
- W4285081856 creator A5048625456 @default.
- W4285081856 creator A5091284694 @default.
- W4285081856 date "2022-11-01" @default.
- W4285081856 modified "2023-10-15" @default.
- W4285081856 title "The dial-a-ride problem with private fleet and common carrier" @default.
- W4285081856 cites W1980244058 @default.
- W4285081856 cites W1982359112 @default.
- W4285081856 cites W1985290529 @default.
- W4285081856 cites W1987602810 @default.
- W4285081856 cites W1993485939 @default.
- W4285081856 cites W2000924903 @default.
- W4285081856 cites W2006538209 @default.
- W4285081856 cites W2007121053 @default.
- W4285081856 cites W2015717108 @default.
- W4285081856 cites W2017383000 @default.
- W4285081856 cites W2031630918 @default.
- W4285081856 cites W2037938479 @default.
- W4285081856 cites W2048314949 @default.
- W4285081856 cites W2051358678 @default.
- W4285081856 cites W2062114635 @default.
- W4285081856 cites W2095535964 @default.
- W4285081856 cites W2119097848 @default.
- W4285081856 cites W2121180493 @default.
- W4285081856 cites W2127988931 @default.
- W4285081856 cites W2132202037 @default.
- W4285081856 cites W2150176315 @default.
- W4285081856 cites W2153386665 @default.
- W4285081856 cites W2165121267 @default.
- W4285081856 cites W2194264221 @default.
- W4285081856 cites W2199591938 @default.
- W4285081856 cites W2533267447 @default.
- W4285081856 cites W2550076789 @default.
- W4285081856 cites W2560329358 @default.
- W4285081856 cites W2599954824 @default.
- W4285081856 cites W2761546686 @default.
- W4285081856 cites W2792987450 @default.
- W4285081856 cites W2797624992 @default.
- W4285081856 cites W2802430251 @default.
- W4285081856 cites W2885000664 @default.
- W4285081856 cites W2887488222 @default.
- W4285081856 cites W2921595858 @default.
- W4285081856 cites W2989144706 @default.
- W4285081856 cites W3015302409 @default.
- W4285081856 cites W3025850278 @default.
- W4285081856 cites W3038674366 @default.
- W4285081856 cites W3047304744 @default.
- W4285081856 cites W3116744303 @default.
- W4285081856 cites W3122956505 @default.
- W4285081856 cites W3187499533 @default.
- W4285081856 doi "https://doi.org/10.1016/j.cor.2022.105933" @default.
- W4285081856 hasPublicationYear "2022" @default.
- W4285081856 type Work @default.
- W4285081856 citedByCount "2" @default.
- W4285081856 countsByYear W42850818562023 @default.
- W4285081856 crossrefType "journal-article" @default.
- W4285081856 hasAuthorship W4285081856A5004964195 @default.
- W4285081856 hasAuthorship W4285081856A5006575824 @default.
- W4285081856 hasAuthorship W4285081856A5045739924 @default.
- W4285081856 hasAuthorship W4285081856A5048625456 @default.
- W4285081856 hasAuthorship W4285081856A5091284694 @default.
- W4285081856 hasConcept C119599485 @default.
- W4285081856 hasConcept C127413603 @default.
- W4285081856 hasConcept C144133560 @default.
- W4285081856 hasConcept C22212356 @default.
- W4285081856 hasConcept C2779710594 @default.
- W4285081856 hasConcept C31258907 @default.
- W4285081856 hasConcept C33923547 @default.
- W4285081856 hasConcept C41008148 @default.
- W4285081856 hasConcept C42475967 @default.
- W4285081856 hasConcept C76155785 @default.
- W4285081856 hasConceptScore W4285081856C119599485 @default.
- W4285081856 hasConceptScore W4285081856C127413603 @default.
- W4285081856 hasConceptScore W4285081856C144133560 @default.
- W4285081856 hasConceptScore W4285081856C22212356 @default.
- W4285081856 hasConceptScore W4285081856C2779710594 @default.
- W4285081856 hasConceptScore W4285081856C31258907 @default.
- W4285081856 hasConceptScore W4285081856C33923547 @default.
- W4285081856 hasConceptScore W4285081856C41008148 @default.
- W4285081856 hasConceptScore W4285081856C42475967 @default.
- W4285081856 hasConceptScore W4285081856C76155785 @default.
- W4285081856 hasFunder F4320314000 @default.
- W4285081856 hasFunder F4320320997 @default.
- W4285081856 hasFunder F4320322025 @default.
- W4285081856 hasFunder F4320334593 @default.
- W4285081856 hasLocation W42850818561 @default.
- W4285081856 hasOpenAccess W4285081856 @default.
- W4285081856 hasPrimaryLocation W42850818561 @default.
- W4285081856 hasRelatedWork W1555698331 @default.
- W4285081856 hasRelatedWork W1901213710 @default.
- W4285081856 hasRelatedWork W1996235532 @default.
- W4285081856 hasRelatedWork W2053829659 @default.
- W4285081856 hasRelatedWork W2130966263 @default.
- W4285081856 hasRelatedWork W2794496709 @default.