Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285083211> ?p ?o ?g. }
- W4285083211 endingPage "3331" @default.
- W4285083211 startingPage "3300" @default.
- W4285083211 abstract "Purpose The purpose of this paper is to explore and examine discrepancies of food aesthetics portrayed on social media across different types of restaurants using a large-scale data set of food images. Design/methodology/approach A neural food aesthetic assessment model using computer vision and deep learning techniques is proposed, applied and evaluated on the food images data set. In addition, a set of photographic attributes drawn from food services and cognitive science research, including color, composition and figure–ground relationship attributes is implemented and compared with aesthetic scores for each food image. Findings This study finds that restaurants with different rating levels, cuisine types and chain status have different aesthetic scores. Moreover, the authors study the difference in the aesthetic scores between two groups of image posters: customers and restaurant owners, showing that the latter group tends to post more aesthetically appealing food images about the restaurant on social media than the former. Practical implications Restaurant owners may consider performing more proactive social media marketing strategies by posting high-quality food images. Likewise, social media platforms should incentivize their users to share high-quality food images. Originality/value The main contribution of this paper is to provide a novel methodological framework to assess the aesthetics of food images. Instead of relying on a multitude of standard attributes stemming from food photography, this method yields a unique one-take-all score, which is more straightforward to understand and more accessible to correlate with other target variables." @default.
- W4285083211 created "2022-07-14" @default.
- W4285083211 creator A5049802130 @default.
- W4285083211 creator A5059444296 @default.
- W4285083211 date "2022-07-14" @default.
- W4285083211 modified "2023-10-06" @default.
- W4285083211 title "Camera eats first: exploring food aesthetics portrayed on social media using deep learning" @default.
- W4285083211 cites W1859493718 @default.
- W4285083211 cites W1968663501 @default.
- W4285083211 cites W1978712750 @default.
- W4285083211 cites W1982598281 @default.
- W4285083211 cites W1984842958 @default.
- W4285083211 cites W2015954181 @default.
- W4285083211 cites W2025481627 @default.
- W4285083211 cites W2029776915 @default.
- W4285083211 cites W2032342622 @default.
- W4285083211 cites W2032558547 @default.
- W4285083211 cites W2046482903 @default.
- W4285083211 cites W2058443651 @default.
- W4285083211 cites W2069860964 @default.
- W4285083211 cites W2081960165 @default.
- W4285083211 cites W2093239923 @default.
- W4285083211 cites W2101926813 @default.
- W4285083211 cites W2103003088 @default.
- W4285083211 cites W2103978234 @default.
- W4285083211 cites W2111164670 @default.
- W4285083211 cites W2112620393 @default.
- W4285083211 cites W2133270441 @default.
- W4285083211 cites W2140488410 @default.
- W4285083211 cites W2147800946 @default.
- W4285083211 cites W2149972285 @default.
- W4285083211 cites W2154204897 @default.
- W4285083211 cites W2238104590 @default.
- W4285083211 cites W2470314431 @default.
- W4285083211 cites W2539161094 @default.
- W4285083211 cites W2577006171 @default.
- W4285083211 cites W2583180839 @default.
- W4285083211 cites W2614937878 @default.
- W4285083211 cites W2754817565 @default.
- W4285083211 cites W2766647035 @default.
- W4285083211 cites W2780946198 @default.
- W4285083211 cites W2794996821 @default.
- W4285083211 cites W2798990976 @default.
- W4285083211 cites W2799570094 @default.
- W4285083211 cites W2891017775 @default.
- W4285083211 cites W2896922452 @default.
- W4285083211 cites W2904193953 @default.
- W4285083211 cites W2907462218 @default.
- W4285083211 cites W2919115771 @default.
- W4285083211 cites W2972032861 @default.
- W4285083211 cites W2972741553 @default.
- W4285083211 cites W2974140502 @default.
- W4285083211 cites W2976226798 @default.
- W4285083211 cites W2984184072 @default.
- W4285083211 cites W3032181922 @default.
- W4285083211 cites W3041133507 @default.
- W4285083211 cites W3075525726 @default.
- W4285083211 cites W3088937729 @default.
- W4285083211 cites W3089914384 @default.
- W4285083211 cites W3103635814 @default.
- W4285083211 cites W3103942587 @default.
- W4285083211 cites W3111133591 @default.
- W4285083211 cites W3120957128 @default.
- W4285083211 cites W3154496996 @default.
- W4285083211 cites W3169212932 @default.
- W4285083211 cites W3177053219 @default.
- W4285083211 cites W3182216828 @default.
- W4285083211 cites W3208843561 @default.
- W4285083211 cites W4243801427 @default.
- W4285083211 cites W657261292 @default.
- W4285083211 doi "https://doi.org/10.1108/ijchm-09-2021-1206" @default.
- W4285083211 hasPublicationYear "2022" @default.
- W4285083211 type Work @default.
- W4285083211 citedByCount "10" @default.
- W4285083211 countsByYear W42850832112022 @default.
- W4285083211 countsByYear W42850832112023 @default.
- W4285083211 crossrefType "journal-article" @default.
- W4285083211 hasAuthorship W4285083211A5049802130 @default.
- W4285083211 hasAuthorship W4285083211A5059444296 @default.
- W4285083211 hasBestOaLocation W42850832112 @default.
- W4285083211 hasConcept C111472728 @default.
- W4285083211 hasConcept C112698675 @default.
- W4285083211 hasConcept C119657128 @default.
- W4285083211 hasConcept C119857082 @default.
- W4285083211 hasConcept C136764020 @default.
- W4285083211 hasConcept C138885662 @default.
- W4285083211 hasConcept C142362112 @default.
- W4285083211 hasConcept C144024400 @default.
- W4285083211 hasConcept C144133560 @default.
- W4285083211 hasConcept C153349607 @default.
- W4285083211 hasConcept C15744967 @default.
- W4285083211 hasConcept C162853370 @default.
- W4285083211 hasConcept C177264268 @default.
- W4285083211 hasConcept C17744445 @default.
- W4285083211 hasConcept C190248442 @default.
- W4285083211 hasConcept C199360897 @default.
- W4285083211 hasConcept C199539241 @default.
- W4285083211 hasConcept C205649164 @default.