Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285083299> ?p ?o ?g. }
- W4285083299 endingPage "2957" @default.
- W4285083299 startingPage "2928" @default.
- W4285083299 abstract "Purpose This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking. Design/methodology/approach This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established. Findings The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation. Originality/value The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity." @default.
- W4285083299 created "2022-07-14" @default.
- W4285083299 creator A5038534104 @default.
- W4285083299 creator A5065350957 @default.
- W4285083299 creator A5070756898 @default.
- W4285083299 date "2022-07-14" @default.
- W4285083299 modified "2023-10-08" @default.
- W4285083299 title "Numerical analysis for mining-induced stress and plastic evolution involving influencing factors: high <i>in situ</i> stress, excavation rate and multilayered heterogeneity" @default.
- W4285083299 cites W1964826383 @default.
- W4285083299 cites W1968169515 @default.
- W4285083299 cites W1968276181 @default.
- W4285083299 cites W1974962101 @default.
- W4285083299 cites W1976420562 @default.
- W4285083299 cites W1982276656 @default.
- W4285083299 cites W1985181792 @default.
- W4285083299 cites W1997826752 @default.
- W4285083299 cites W1999046219 @default.
- W4285083299 cites W2004030340 @default.
- W4285083299 cites W2013070007 @default.
- W4285083299 cites W2023076377 @default.
- W4285083299 cites W2024437214 @default.
- W4285083299 cites W2025623768 @default.
- W4285083299 cites W2027257006 @default.
- W4285083299 cites W2049455998 @default.
- W4285083299 cites W2083340713 @default.
- W4285083299 cites W2094399208 @default.
- W4285083299 cites W2098258814 @default.
- W4285083299 cites W2128953827 @default.
- W4285083299 cites W2159900267 @default.
- W4285083299 cites W2166298365 @default.
- W4285083299 cites W2167786789 @default.
- W4285083299 cites W2168650293 @default.
- W4285083299 cites W2512231377 @default.
- W4285083299 cites W2797737626 @default.
- W4285083299 cites W2904190748 @default.
- W4285083299 cites W3024582244 @default.
- W4285083299 cites W3039061226 @default.
- W4285083299 cites W3042435774 @default.
- W4285083299 cites W3120112885 @default.
- W4285083299 cites W3175840395 @default.
- W4285083299 cites W4231553000 @default.
- W4285083299 doi "https://doi.org/10.1108/ec-10-2021-0614" @default.
- W4285083299 hasPublicationYear "2022" @default.
- W4285083299 type Work @default.
- W4285083299 citedByCount "1" @default.
- W4285083299 countsByYear W42850832992023 @default.
- W4285083299 crossrefType "journal-article" @default.
- W4285083299 hasAuthorship W4285083299A5038534104 @default.
- W4285083299 hasAuthorship W4285083299A5065350957 @default.
- W4285083299 hasAuthorship W4285083299A5070756898 @default.
- W4285083299 hasConcept C108615695 @default.
- W4285083299 hasConcept C111368507 @default.
- W4285083299 hasConcept C120398109 @default.
- W4285083299 hasConcept C127313418 @default.
- W4285083299 hasConcept C127413603 @default.
- W4285083299 hasConcept C135628077 @default.
- W4285083299 hasConcept C138885662 @default.
- W4285083299 hasConcept C151730666 @default.
- W4285083299 hasConcept C16674752 @default.
- W4285083299 hasConcept C187320778 @default.
- W4285083299 hasConcept C192562407 @default.
- W4285083299 hasConcept C204366326 @default.
- W4285083299 hasConcept C21036866 @default.
- W4285083299 hasConcept C2777601987 @default.
- W4285083299 hasConcept C2778414698 @default.
- W4285083299 hasConcept C31858485 @default.
- W4285083299 hasConcept C41242791 @default.
- W4285083299 hasConcept C41895202 @default.
- W4285083299 hasConcept C49040817 @default.
- W4285083299 hasConcept C518851703 @default.
- W4285083299 hasConcept C548081761 @default.
- W4285083299 hasConcept C66938386 @default.
- W4285083299 hasConceptScore W4285083299C108615695 @default.
- W4285083299 hasConceptScore W4285083299C111368507 @default.
- W4285083299 hasConceptScore W4285083299C120398109 @default.
- W4285083299 hasConceptScore W4285083299C127313418 @default.
- W4285083299 hasConceptScore W4285083299C127413603 @default.
- W4285083299 hasConceptScore W4285083299C135628077 @default.
- W4285083299 hasConceptScore W4285083299C138885662 @default.
- W4285083299 hasConceptScore W4285083299C151730666 @default.
- W4285083299 hasConceptScore W4285083299C16674752 @default.
- W4285083299 hasConceptScore W4285083299C187320778 @default.
- W4285083299 hasConceptScore W4285083299C192562407 @default.
- W4285083299 hasConceptScore W4285083299C204366326 @default.
- W4285083299 hasConceptScore W4285083299C21036866 @default.
- W4285083299 hasConceptScore W4285083299C2777601987 @default.
- W4285083299 hasConceptScore W4285083299C2778414698 @default.
- W4285083299 hasConceptScore W4285083299C31858485 @default.
- W4285083299 hasConceptScore W4285083299C41242791 @default.
- W4285083299 hasConceptScore W4285083299C41895202 @default.
- W4285083299 hasConceptScore W4285083299C49040817 @default.
- W4285083299 hasConceptScore W4285083299C518851703 @default.
- W4285083299 hasConceptScore W4285083299C548081761 @default.
- W4285083299 hasConceptScore W4285083299C66938386 @default.
- W4285083299 hasIssue "8" @default.
- W4285083299 hasLocation W42850832991 @default.
- W4285083299 hasOpenAccess W4285083299 @default.
- W4285083299 hasPrimaryLocation W42850832991 @default.