Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285087228> ?p ?o ?g. }
- W4285087228 endingPage "1659" @default.
- W4285087228 startingPage "1641" @default.
- W4285087228 abstract "Abstract Microphysical perturbation experiments were conducted to investigate the sensitivity of convective heavy rain simulation to cloud microphysical parameterization and its feasibility for ensemble forecasts. An ensemble of 20 perturbation members differing in either the microphysics package or process treatments within a single scheme was applied to simulate 10 summer-afternoon heavy-rain convection cases. The simulations revealed substantial disagreements in the location and amplitude of peak rainfall among the microphysics-package and single-scheme members, with an overall spread of 57%–161%, 66%–161%, and 65%–149% of the observed average rainfall, maximum rainfall, and maximum intensity, respectively. The single-scheme members revealed that the simulation of heavy convective precipitation is quite sensitive to factors including ice-particle fall speed parameterization, aerosol type, ice particle shape, and size distribution representation. The microphysical ensemble can derive reasonable probability of occurrence for a location-specific heavy-rain forecast. Spatial-forecast performance indices up to 0.6 were attained by applying an optimal fuzzy radius of about 8 km for the warning-area coverage. The forecasts tend to be more successful for more organized convection. Spectral mapping methods were further applied to provide ensemble forecasts for the 10 heavy rainfall cases. For most cases, realistic spatial patterns were derived with spatial correlation up to 0.8. The quantitative performance in average rainfall, maximum rainfall, and maximum intensity from the ensembles reached correlations of 0.83, 0.84, and 0.51, respectively, with the observed values. Significance Statement Heavy rainfall from summer convections is stochastic in terms of intensity and location; therefore, an accurate deterministic forecast is often challenging. We designed perturbation experiments to explore weather forecasting models’ sensitivity to cloud microphysical parameterizations and the feasibility of application to ensemble forecast. Promising results were obtained from simulations of 10 real cases. The cloud microphysical ensemble approach may provide reasonable forecasts of heavy rainfall probability and convincing rainfall spatial distribution, particularly for more organized convection." @default.
- W4285087228 created "2022-07-14" @default.
- W4285087228 creator A5001200365 @default.
- W4285087228 creator A5017863962 @default.
- W4285087228 creator A5031059601 @default.
- W4285087228 creator A5058622539 @default.
- W4285087228 creator A5081849676 @default.
- W4285087228 creator A5083541924 @default.
- W4285087228 date "2022-09-01" @default.
- W4285087228 modified "2023-10-16" @default.
- W4285087228 title "Microphysical Perturbation Experiments and Ensemble Forecasts on Summertime Heavy Rainfall over Northern Taiwan" @default.
- W4285087228 cites W1489678364 @default.
- W4285087228 cites W1503515865 @default.
- W4285087228 cites W1876139813 @default.
- W4285087228 cites W1907141412 @default.
- W4285087228 cites W1968571511 @default.
- W4285087228 cites W1990861090 @default.
- W4285087228 cites W2004043727 @default.
- W4285087228 cites W2007876567 @default.
- W4285087228 cites W2010815813 @default.
- W4285087228 cites W2015728770 @default.
- W4285087228 cites W2019775760 @default.
- W4285087228 cites W2023778504 @default.
- W4285087228 cites W2026705580 @default.
- W4285087228 cites W2027697451 @default.
- W4285087228 cites W2028152024 @default.
- W4285087228 cites W2028979275 @default.
- W4285087228 cites W2031675844 @default.
- W4285087228 cites W2058256848 @default.
- W4285087228 cites W2077822207 @default.
- W4285087228 cites W2090675528 @default.
- W4285087228 cites W2091361900 @default.
- W4285087228 cites W2094661995 @default.
- W4285087228 cites W2099860565 @default.
- W4285087228 cites W2100248738 @default.
- W4285087228 cites W2103959539 @default.
- W4285087228 cites W2109405689 @default.
- W4285087228 cites W2110062597 @default.
- W4285087228 cites W2114883075 @default.
- W4285087228 cites W2117620267 @default.
- W4285087228 cites W2120786239 @default.
- W4285087228 cites W2121082111 @default.
- W4285087228 cites W2123901646 @default.
- W4285087228 cites W2128634041 @default.
- W4285087228 cites W2133060702 @default.
- W4285087228 cites W2139774107 @default.
- W4285087228 cites W2142794782 @default.
- W4285087228 cites W2144282700 @default.
- W4285087228 cites W2146411488 @default.
- W4285087228 cites W2156058743 @default.
- W4285087228 cites W2161467829 @default.
- W4285087228 cites W2163667214 @default.
- W4285087228 cites W2166705834 @default.
- W4285087228 cites W2173036356 @default.
- W4285087228 cites W2174778049 @default.
- W4285087228 cites W2174913527 @default.
- W4285087228 cites W2179952483 @default.
- W4285087228 cites W2180502427 @default.
- W4285087228 cites W2259856245 @default.
- W4285087228 cites W2323319863 @default.
- W4285087228 cites W2357532771 @default.
- W4285087228 cites W2468286808 @default.
- W4285087228 cites W2516137856 @default.
- W4285087228 cites W2583927402 @default.
- W4285087228 cites W2739227244 @default.
- W4285087228 cites W2767979316 @default.
- W4285087228 cites W2794441897 @default.
- W4285087228 cites W2886638015 @default.
- W4285087228 cites W2888417218 @default.
- W4285087228 cites W2915068895 @default.
- W4285087228 cites W2967464641 @default.
- W4285087228 cites W2984275847 @default.
- W4285087228 cites W2996388794 @default.
- W4285087228 cites W3010777467 @default.
- W4285087228 cites W3015997515 @default.
- W4285087228 cites W3023073569 @default.
- W4285087228 cites W3045342323 @default.
- W4285087228 cites W3092606468 @default.
- W4285087228 cites W3092640309 @default.
- W4285087228 cites W3097552105 @default.
- W4285087228 cites W3134920544 @default.
- W4285087228 cites W3212055114 @default.
- W4285087228 cites W4211242048 @default.
- W4285087228 cites W4246765045 @default.
- W4285087228 doi "https://doi.org/10.1175/waf-d-22-0004.1" @default.
- W4285087228 hasPublicationYear "2022" @default.
- W4285087228 type Work @default.
- W4285087228 citedByCount "0" @default.
- W4285087228 crossrefType "journal-article" @default.
- W4285087228 hasAuthorship W4285087228A5001200365 @default.
- W4285087228 hasAuthorship W4285087228A5017863962 @default.
- W4285087228 hasAuthorship W4285087228A5031059601 @default.
- W4285087228 hasAuthorship W4285087228A5058622539 @default.
- W4285087228 hasAuthorship W4285087228A5081849676 @default.
- W4285087228 hasAuthorship W4285087228A5083541924 @default.
- W4285087228 hasConcept C107054158 @default.
- W4285087228 hasConcept C10899652 @default.
- W4285087228 hasConcept C119898033 @default.