Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285087234> ?p ?o ?g. }
- W4285087234 abstract "Abstract Data-driven machine learning algorithms have initiated a paradigm shift in hedonic house price and rent modeling through their ability to capture highly complex and non-monotonic relationships. Their superior accuracy compared to parametric model alternatives has been demonstrated repeatedly in the literature. However, the statistical independence of the data implicitly assumed by resampling-based error estimates is unlikely to hold in a real estate context as price-formation processes in property markets are inherently spatial, which leads to spatial dependence structures in the data. When performing conventional cross-validation techniques for model selection and model assessment, spatial dependence between training and test data may lead to undetected overfitting and overoptimistic perception of predictive power. This study sheds light on the bias in cross-validation errors of tree-based algorithms induced by spatial autocorrelation and proposes a bias-reduced spatial cross-validation strategy. The findings confirm that error estimates from non-spatial resampling methods are overly optimistic, whereas spatially conscious techniques are more dependable and can increase generalizability. As accurate and unbiased error estimates are crucial to automated valuation methods, our results prove helpful for applications including, but not limited to, mass appraisal, credit risk management, portfolio allocation and investment decision making." @default.
- W4285087234 created "2022-07-14" @default.
- W4285087234 creator A5010230567 @default.
- W4285087234 creator A5045615504 @default.
- W4285087234 date "2022-07-13" @default.
- W4285087234 modified "2023-09-25" @default.
- W4285087234 title "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach" @default.
- W4285087234 cites W1493122757 @default.
- W4285087234 cites W1501458856 @default.
- W4285087234 cites W1504778066 @default.
- W4285087234 cites W1527882638 @default.
- W4285087234 cites W1541504294 @default.
- W4285087234 cites W1554209916 @default.
- W4285087234 cites W1589097074 @default.
- W4285087234 cites W1678356000 @default.
- W4285087234 cites W1754495824 @default.
- W4285087234 cites W1931075228 @default.
- W4285087234 cites W1972667276 @default.
- W4285087234 cites W1973749534 @default.
- W4285087234 cites W1976144991 @default.
- W4285087234 cites W1986286932 @default.
- W4285087234 cites W1988980926 @default.
- W4285087234 cites W1991382329 @default.
- W4285087234 cites W2003759963 @default.
- W4285087234 cites W2018405094 @default.
- W4285087234 cites W2025797685 @default.
- W4285087234 cites W2028226037 @default.
- W4285087234 cites W2028399164 @default.
- W4285087234 cites W2029029049 @default.
- W4285087234 cites W2030068896 @default.
- W4285087234 cites W2038546254 @default.
- W4285087234 cites W2051688880 @default.
- W4285087234 cites W2077520869 @default.
- W4285087234 cites W2079836731 @default.
- W4285087234 cites W2111616256 @default.
- W4285087234 cites W2111814036 @default.
- W4285087234 cites W2112081648 @default.
- W4285087234 cites W2114389382 @default.
- W4285087234 cites W2115709314 @default.
- W4285087234 cites W2118898434 @default.
- W4285087234 cites W2122447387 @default.
- W4285087234 cites W2124399418 @default.
- W4285087234 cites W2130956715 @default.
- W4285087234 cites W2141007997 @default.
- W4285087234 cites W2143652321 @default.
- W4285087234 cites W2172041548 @default.
- W4285087234 cites W2251575556 @default.
- W4285087234 cites W2266925404 @default.
- W4285087234 cites W2481061264 @default.
- W4285087234 cites W2487770199 @default.
- W4285087234 cites W2496675188 @default.
- W4285087234 cites W2560136348 @default.
- W4285087234 cites W2607344955 @default.
- W4285087234 cites W2610886376 @default.
- W4285087234 cites W2729033468 @default.
- W4285087234 cites W2757285809 @default.
- W4285087234 cites W2765508957 @default.
- W4285087234 cites W2781064434 @default.
- W4285087234 cites W2787894218 @default.
- W4285087234 cites W2794916302 @default.
- W4285087234 cites W2801461565 @default.
- W4285087234 cites W2883293858 @default.
- W4285087234 cites W2889948534 @default.
- W4285087234 cites W2890905882 @default.
- W4285087234 cites W2908970112 @default.
- W4285087234 cites W2911438300 @default.
- W4285087234 cites W2911964244 @default.
- W4285087234 cites W2913543033 @default.
- W4285087234 cites W2924198847 @default.
- W4285087234 cites W2952516441 @default.
- W4285087234 cites W2959847940 @default.
- W4285087234 cites W2969193389 @default.
- W4285087234 cites W2971574616 @default.
- W4285087234 cites W2972629016 @default.
- W4285087234 cites W2996717911 @default.
- W4285087234 cites W3004756438 @default.
- W4285087234 cites W3026405043 @default.
- W4285087234 cites W3102476541 @default.
- W4285087234 cites W3118899449 @default.
- W4285087234 cites W3121619899 @default.
- W4285087234 cites W3121996782 @default.
- W4285087234 cites W3123930234 @default.
- W4285087234 cites W3124863041 @default.
- W4285087234 cites W3125919348 @default.
- W4285087234 cites W4212883601 @default.
- W4285087234 cites W4214856922 @default.
- W4285087234 cites W4230523054 @default.
- W4285087234 cites W4238049555 @default.
- W4285087234 cites W4243562335 @default.
- W4285087234 cites W4281996971 @default.
- W4285087234 cites W4297957988 @default.
- W4285087234 cites W4301651410 @default.
- W4285087234 doi "https://doi.org/10.1007/s11146-022-09915-y" @default.
- W4285087234 hasPublicationYear "2022" @default.
- W4285087234 type Work @default.
- W4285087234 citedByCount "1" @default.
- W4285087234 countsByYear W42850872342023 @default.
- W4285087234 crossrefType "journal-article" @default.
- W4285087234 hasAuthorship W4285087234A5010230567 @default.
- W4285087234 hasAuthorship W4285087234A5045615504 @default.