Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285087389> ?p ?o ?g. }
- W4285087389 endingPage "e0271458" @default.
- W4285087389 startingPage "e0271458" @default.
- W4285087389 abstract "Accurate and sufficient water quality data is essential for watershed management and sustainability. Machine learning models have shown great potentials for estimating water quality with the development of online sensors. However, accurate estimation is challenging because of uncertainties related to models used and data input. In this study, random forest (RF), support vector machine (SVM), and back-propagation neural network (BPNN) models are developed with three sampling frequency datasets (i.e., 4-hourly, daily, and weekly) and five conventional indicators (i.e., water temperature (WT), hydrogen ion concentration (pH), electrical conductivity (EC), dissolved oxygen (DO), and turbidity (TUR)) as surrogates to individually estimate riverine total phosphorus (TP), total nitrogen (TN), and ammonia nitrogen (NH4+-N) in a small-scale coastal watershed. The results show that the RF model outperforms the SVM and BPNN machine learning models in terms of estimative performance, which explains much of the variation in TP (79 ± 1.3%), TN (84 ± 0.9%), and NH4+-N (75 ± 1.3%), when using the 4-hourly sampling frequency dataset. The higher sampling frequency would help the RF obtain a significantly better performance for the three nutrient estimation measures (4-hourly > daily > weekly) for R2 and NSE values. WT, EC, and TUR were the three key input indicators for nutrient estimations in RF. Our study highlights the importance of high-frequency data as input to machine learning model development. The RF model is shown to be viable for riverine nutrient estimation in small-scale watersheds of important local water security." @default.
- W4285087389 created "2022-07-14" @default.
- W4285087389 creator A5005706497 @default.
- W4285087389 creator A5012449567 @default.
- W4285087389 creator A5045309022 @default.
- W4285087389 creator A5084129345 @default.
- W4285087389 date "2022-07-13" @default.
- W4285087389 modified "2023-10-01" @default.
- W4285087389 title "Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies" @default.
- W4285087389 cites W1996246464 @default.
- W4285087389 cites W2002351729 @default.
- W4285087389 cites W2005403210 @default.
- W4285087389 cites W2029748544 @default.
- W4285087389 cites W2033101716 @default.
- W4285087389 cites W2054778998 @default.
- W4285087389 cites W2139718878 @default.
- W4285087389 cites W2141500105 @default.
- W4285087389 cites W2256368425 @default.
- W4285087389 cites W2261059368 @default.
- W4285087389 cites W2300217830 @default.
- W4285087389 cites W2311533087 @default.
- W4285087389 cites W2419137750 @default.
- W4285087389 cites W2516255137 @default.
- W4285087389 cites W2517850251 @default.
- W4285087389 cites W2529588304 @default.
- W4285087389 cites W2565982626 @default.
- W4285087389 cites W2586477803 @default.
- W4285087389 cites W2751185093 @default.
- W4285087389 cites W2758431428 @default.
- W4285087389 cites W2790976293 @default.
- W4285087389 cites W2791905659 @default.
- W4285087389 cites W2792277382 @default.
- W4285087389 cites W2792417128 @default.
- W4285087389 cites W2793415180 @default.
- W4285087389 cites W2804178202 @default.
- W4285087389 cites W2892163048 @default.
- W4285087389 cites W2892336003 @default.
- W4285087389 cites W2899192297 @default.
- W4285087389 cites W2900845952 @default.
- W4285087389 cites W2913323966 @default.
- W4285087389 cites W2950469931 @default.
- W4285087389 cites W2969902920 @default.
- W4285087389 cites W2998681661 @default.
- W4285087389 cites W2999667975 @default.
- W4285087389 cites W3006101764 @default.
- W4285087389 cites W3021324573 @default.
- W4285087389 cites W3032685738 @default.
- W4285087389 cites W3037312783 @default.
- W4285087389 cites W3093733298 @default.
- W4285087389 cites W3112905420 @default.
- W4285087389 cites W3117975874 @default.
- W4285087389 cites W3123136168 @default.
- W4285087389 cites W3125067487 @default.
- W4285087389 cites W417874410 @default.
- W4285087389 cites W4248083651 @default.
- W4285087389 doi "https://doi.org/10.1371/journal.pone.0271458" @default.
- W4285087389 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35830456" @default.
- W4285087389 hasPublicationYear "2022" @default.
- W4285087389 type Work @default.
- W4285087389 citedByCount "3" @default.
- W4285087389 countsByYear W42850873892023 @default.
- W4285087389 crossrefType "journal-article" @default.
- W4285087389 hasAuthorship W4285087389A5005706497 @default.
- W4285087389 hasAuthorship W4285087389A5012449567 @default.
- W4285087389 hasAuthorship W4285087389A5045309022 @default.
- W4285087389 hasAuthorship W4285087389A5084129345 @default.
- W4285087389 hasBestOaLocation W42850873891 @default.
- W4285087389 hasConcept C105795698 @default.
- W4285087389 hasConcept C119857082 @default.
- W4285087389 hasConcept C12267149 @default.
- W4285087389 hasConcept C127413603 @default.
- W4285087389 hasConcept C140779682 @default.
- W4285087389 hasConcept C142796444 @default.
- W4285087389 hasConcept C150547873 @default.
- W4285087389 hasConcept C154945302 @default.
- W4285087389 hasConcept C169258074 @default.
- W4285087389 hasConcept C187320778 @default.
- W4285087389 hasConcept C18903297 @default.
- W4285087389 hasConcept C2780797713 @default.
- W4285087389 hasConcept C33923547 @default.
- W4285087389 hasConcept C39432304 @default.
- W4285087389 hasConcept C41008148 @default.
- W4285087389 hasConcept C76155785 @default.
- W4285087389 hasConcept C76886044 @default.
- W4285087389 hasConcept C86803240 @default.
- W4285087389 hasConcept C94915269 @default.
- W4285087389 hasConceptScore W4285087389C105795698 @default.
- W4285087389 hasConceptScore W4285087389C119857082 @default.
- W4285087389 hasConceptScore W4285087389C12267149 @default.
- W4285087389 hasConceptScore W4285087389C127413603 @default.
- W4285087389 hasConceptScore W4285087389C140779682 @default.
- W4285087389 hasConceptScore W4285087389C142796444 @default.
- W4285087389 hasConceptScore W4285087389C150547873 @default.
- W4285087389 hasConceptScore W4285087389C154945302 @default.
- W4285087389 hasConceptScore W4285087389C169258074 @default.
- W4285087389 hasConceptScore W4285087389C187320778 @default.
- W4285087389 hasConceptScore W4285087389C18903297 @default.
- W4285087389 hasConceptScore W4285087389C2780797713 @default.