Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285090400> ?p ?o ?g. }
- W4285090400 endingPage "94" @default.
- W4285090400 startingPage "94" @default.
- W4285090400 abstract "Recommender systems (RS) have been developed to make personalized suggestions and enrich users’ preferences in various online applications to address the information explosion problems. However, traditional recommender-based systems act as black boxes, not presenting the user with insights into the system logic or reasons for recommendations. Recently, generating explainable recommendations with deep knowledge graphs (DKG) has attracted significant attention. DKG is a subset of explainable artificial intelligence (XAI) that utilizes the strengths of deep learning (DL) algorithms to learn, provide high-quality predictions, and complement the weaknesses of knowledge graphs (KGs) in the explainability of recommendations. DKG-based models can provide more meaningful, insightful, and trustworthy justifications for recommended items and alleviate the information explosion problems. Although several studies have been carried out on RS, only a few papers have been published on DKG-based methodologies, and a review in this new research direction is still insufficiently explored. To fill this literature gap, this paper uses a systematic literature review framework to survey the recently published papers from 2018 to 2022 in the landscape of DKG and XAI. We analyze how the methods produced in these papers extract essential information from graph-based representations to improve recommendations’ accuracy, explainability, and reliability. From the perspective of the leveraged knowledge-graph related information and how the knowledge-graph or path embeddings are learned and integrated with the DL methods, we carefully select and classify these published works into four main categories: the Two-stage explainable learning methods, the Joint-stage explainable learning methods, the Path-embedding explainable learning methods, and the Propagation explainable learning methods. We further summarize these works according to the characteristics of the approaches and the recommendation scenarios to facilitate the ease of checking the literature. We finally conclude by discussing some open challenges left for future research in this vibrant field." @default.
- W4285090400 created "2022-07-14" @default.
- W4285090400 creator A5014752813 @default.
- W4285090400 creator A5040859203 @default.
- W4285090400 creator A5068071105 @default.
- W4285090400 creator A5072497654 @default.
- W4285090400 creator A5091103295 @default.
- W4285090400 date "2022-07-12" @default.
- W4285090400 modified "2023-09-30" @default.
- W4285090400 title "A Systematic Review of Deep Knowledge Graph-Based Recommender Systems, with Focus on Explainable Embeddings" @default.
- W4285090400 cites W1552276231 @default.
- W4285090400 cites W1552847225 @default.
- W4285090400 cites W2016089260 @default.
- W4285090400 cites W2032177834 @default.
- W4285090400 cites W2081580037 @default.
- W4285090400 cites W2094728533 @default.
- W4285090400 cites W2099752825 @default.
- W4285090400 cites W2107658650 @default.
- W4285090400 cites W2132655161 @default.
- W4285090400 cites W2136922672 @default.
- W4285090400 cites W2171960770 @default.
- W4285090400 cites W2475334473 @default.
- W4285090400 cites W2509893387 @default.
- W4285090400 cites W2512971201 @default.
- W4285090400 cites W2557074642 @default.
- W4285090400 cites W2605350416 @default.
- W4285090400 cites W2741271950 @default.
- W4285090400 cites W2742272831 @default.
- W4285090400 cites W2759136286 @default.
- W4285090400 cites W2789315970 @default.
- W4285090400 cites W2801992635 @default.
- W4285090400 cites W2808830023 @default.
- W4285090400 cites W2883679850 @default.
- W4285090400 cites W2893775232 @default.
- W4285090400 cites W2899849645 @default.
- W4285090400 cites W2903340942 @default.
- W4285090400 cites W2908404712 @default.
- W4285090400 cites W2911778742 @default.
- W4285090400 cites W2912664727 @default.
- W4285090400 cites W2945623882 @default.
- W4285090400 cites W2949687195 @default.
- W4285090400 cites W2962869320 @default.
- W4285090400 cites W2963869731 @default.
- W4285090400 cites W2963919031 @default.
- W4285090400 cites W2966349618 @default.
- W4285090400 cites W2982019227 @default.
- W4285090400 cites W3001654774 @default.
- W4285090400 cites W3015889244 @default.
- W4285090400 cites W3040301022 @default.
- W4285090400 cites W3089210493 @default.
- W4285090400 cites W3106440478 @default.
- W4285090400 cites W3124675547 @default.
- W4285090400 cites W3126174444 @default.
- W4285090400 cites W3127219112 @default.
- W4285090400 cites W3136296618 @default.
- W4285090400 cites W3138819813 @default.
- W4285090400 cites W3165174865 @default.
- W4285090400 cites W3199689927 @default.
- W4285090400 cites W3210017165 @default.
- W4285090400 cites W4200334431 @default.
- W4285090400 cites W4231218151 @default.
- W4285090400 cites W68132019 @default.
- W4285090400 doi "https://doi.org/10.3390/data7070094" @default.
- W4285090400 hasPublicationYear "2022" @default.
- W4285090400 type Work @default.
- W4285090400 citedByCount "1" @default.
- W4285090400 countsByYear W42850904002023 @default.
- W4285090400 crossrefType "journal-article" @default.
- W4285090400 hasAuthorship W4285090400A5014752813 @default.
- W4285090400 hasAuthorship W4285090400A5040859203 @default.
- W4285090400 hasAuthorship W4285090400A5068071105 @default.
- W4285090400 hasAuthorship W4285090400A5072497654 @default.
- W4285090400 hasAuthorship W4285090400A5091103295 @default.
- W4285090400 hasBestOaLocation W42850904001 @default.
- W4285090400 hasConcept C108583219 @default.
- W4285090400 hasConcept C111472728 @default.
- W4285090400 hasConcept C132525143 @default.
- W4285090400 hasConcept C138885662 @default.
- W4285090400 hasConcept C154945302 @default.
- W4285090400 hasConcept C23123220 @default.
- W4285090400 hasConcept C2522767166 @default.
- W4285090400 hasConcept C2987255567 @default.
- W4285090400 hasConcept C41008148 @default.
- W4285090400 hasConcept C557471498 @default.
- W4285090400 hasConcept C63882131 @default.
- W4285090400 hasConcept C80444323 @default.
- W4285090400 hasConceptScore W4285090400C108583219 @default.
- W4285090400 hasConceptScore W4285090400C111472728 @default.
- W4285090400 hasConceptScore W4285090400C132525143 @default.
- W4285090400 hasConceptScore W4285090400C138885662 @default.
- W4285090400 hasConceptScore W4285090400C154945302 @default.
- W4285090400 hasConceptScore W4285090400C23123220 @default.
- W4285090400 hasConceptScore W4285090400C2522767166 @default.
- W4285090400 hasConceptScore W4285090400C2987255567 @default.
- W4285090400 hasConceptScore W4285090400C41008148 @default.
- W4285090400 hasConceptScore W4285090400C557471498 @default.
- W4285090400 hasConceptScore W4285090400C63882131 @default.
- W4285090400 hasConceptScore W4285090400C80444323 @default.