Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285093669> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4285093669 endingPage "815" @default.
- W4285093669 startingPage "789" @default.
- W4285093669 abstract "Wisdom of the crowd (Surowiecki, 2005a) disclosed a striking fact that the majority voting answer from a crowd is usually more accurate than a few individual experts. The same story is observed in machine learning - ensemble methods (Dietterich, 2000) leverage this idea to exploit multiple machine learning algorithms in various settings e.g., supervised learning and semi-supervised learning to achieve better performance by aggregating the predictions of different algorithms than that obtained from any constituent algorithm alone. Nonetheless, the existing aggregating rule would fail when the majority answer of all the constituent algorithms is more likely to be wrong. In this paper, we extend the idea proposed in Bayesian Truth Serum (Prelec, 2004) that “a surprisingly more popular answer is more likely to be the true answer instead of the majority one” to supervised classification further improved by ensemble final predictions method and semi-supervised classification (e.g., MixMatch (Berthelot et al., 2019)) enhanced by ensemble data augmentations method. The challenge for us is to define or detect when an answer should be considered as being “surprising”. We present two machine learning aided methods which can reveal the truth when the minority instead of majority has the true answer on both settings of supervised and semi-supervised classification problems. We name our proposed method the Machine Truth Serum. Our experiments on a set of classification tasks (image, text, etc.) show that the classification performance can be further improved by applying Machine Truth Serum in the ensemble final predictions step (supervised) and in the ensemble data augmentations step (semi-supervised)." @default.
- W4285093669 created "2022-07-14" @default.
- W4285093669 creator A5023363049 @default.
- W4285093669 creator A5066431124 @default.
- W4285093669 date "2022-07-12" @default.
- W4285093669 modified "2023-09-26" @default.
- W4285093669 title "Machine truth serum: a surprisingly popular approach to improving ensemble methods" @default.
- W4285093669 cites W1479807131 @default.
- W4285093669 cites W1988790447 @default.
- W4285093669 cites W2004147962 @default.
- W4285093669 cites W2040870580 @default.
- W4285093669 cites W2063782051 @default.
- W4285093669 cites W2107901333 @default.
- W4285093669 cites W2111275873 @default.
- W4285093669 cites W2129954861 @default.
- W4285093669 cites W2251722048 @default.
- W4285093669 cites W2580299352 @default.
- W4285093669 cites W2774899198 @default.
- W4285093669 cites W2891602716 @default.
- W4285093669 cites W2914913933 @default.
- W4285093669 cites W2946358633 @default.
- W4285093669 cites W2963026768 @default.
- W4285093669 cites W2964159205 @default.
- W4285093669 cites W2979805229 @default.
- W4285093669 cites W2998135793 @default.
- W4285093669 cites W3035542229 @default.
- W4285093669 cites W3103900065 @default.
- W4285093669 cites W3123905867 @default.
- W4285093669 doi "https://doi.org/10.1007/s10994-022-06183-y" @default.
- W4285093669 hasPublicationYear "2022" @default.
- W4285093669 type Work @default.
- W4285093669 citedByCount "1" @default.
- W4285093669 countsByYear W42850936692023 @default.
- W4285093669 crossrefType "journal-article" @default.
- W4285093669 hasAuthorship W4285093669A5023363049 @default.
- W4285093669 hasAuthorship W4285093669A5066431124 @default.
- W4285093669 hasBestOaLocation W42850936691 @default.
- W4285093669 hasConcept C119857082 @default.
- W4285093669 hasConcept C136389625 @default.
- W4285093669 hasConcept C146849305 @default.
- W4285093669 hasConcept C153083717 @default.
- W4285093669 hasConcept C153668964 @default.
- W4285093669 hasConcept C154945302 @default.
- W4285093669 hasConcept C165696696 @default.
- W4285093669 hasConcept C177264268 @default.
- W4285093669 hasConcept C199360897 @default.
- W4285093669 hasConcept C38652104 @default.
- W4285093669 hasConcept C41008148 @default.
- W4285093669 hasConcept C45942800 @default.
- W4285093669 hasConcept C50644808 @default.
- W4285093669 hasConceptScore W4285093669C119857082 @default.
- W4285093669 hasConceptScore W4285093669C136389625 @default.
- W4285093669 hasConceptScore W4285093669C146849305 @default.
- W4285093669 hasConceptScore W4285093669C153083717 @default.
- W4285093669 hasConceptScore W4285093669C153668964 @default.
- W4285093669 hasConceptScore W4285093669C154945302 @default.
- W4285093669 hasConceptScore W4285093669C165696696 @default.
- W4285093669 hasConceptScore W4285093669C177264268 @default.
- W4285093669 hasConceptScore W4285093669C199360897 @default.
- W4285093669 hasConceptScore W4285093669C38652104 @default.
- W4285093669 hasConceptScore W4285093669C41008148 @default.
- W4285093669 hasConceptScore W4285093669C45942800 @default.
- W4285093669 hasConceptScore W4285093669C50644808 @default.
- W4285093669 hasFunder F4320335353 @default.
- W4285093669 hasIssue "3" @default.
- W4285093669 hasLocation W42850936691 @default.
- W4285093669 hasOpenAccess W4285093669 @default.
- W4285093669 hasPrimaryLocation W42850936691 @default.
- W4285093669 hasRelatedWork W1520691178 @default.
- W4285093669 hasRelatedWork W2783385633 @default.
- W4285093669 hasRelatedWork W2806912412 @default.
- W4285093669 hasRelatedWork W3173959091 @default.
- W4285093669 hasRelatedWork W3199974879 @default.
- W4285093669 hasRelatedWork W4283016678 @default.
- W4285093669 hasRelatedWork W4285093669 @default.
- W4285093669 hasRelatedWork W4292969247 @default.
- W4285093669 hasRelatedWork W4318350883 @default.
- W4285093669 hasRelatedWork W4319309271 @default.
- W4285093669 hasVolume "112" @default.
- W4285093669 isParatext "false" @default.
- W4285093669 isRetracted "false" @default.
- W4285093669 workType "article" @default.