Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285097780> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4285097780 endingPage "107004" @default.
- W4285097780 startingPage "107004" @default.
- W4285097780 abstract "Deep Learning (DL) frameworks enable developers to build DNN models without learning the underlying algorithms and models. While some of these DL-based software systems have been deployed in safety-critical areas, such as self-driving cars and medical diagnostics, for DL frameworks, characterizing their bugs and thus helping researchers to design specific quality assurance techniques become desperately needed. Our research aims to characterize bugs typical of DL frameworks at the source code level for an in-depth analysis of bug symptoms, root causes, and bug fixes. In this way, we hope to provide insights for researchers to design automatic quality assurance techniques, such as automatic repair techniques and fault location techniques, applicable to DL frameworks and DL-based software systems. We started by summarizing the DL framework reference architecture and proposing the DL framework bug taxonomy. Then, we mined 1,127 DL framework bug reports from eight popular DL frameworks and labeled the bug types, root causes, and symptoms. Finally, we discussed the bug characteristics and explored how developers could possibly deal with these bugs. Our main findings are: (i) DNN model building bugs and general type bugs accounted for one-third of the total defects. (ii) DNN model building bugs are more prone to algorithm logic constraints, internal API errors, and data/numerical errors. (iii) Fifteen bug-fixing patterns are summarized, providing reference for common DL framework bug repair and future research on the development of automatic DL framework bug detection tools. By analyzing the bug-fixing changes, we characterize the occurrences, root causes, symptoms, and fixing of these bugs. The study results have provided researchers with insights into how to ensure DL framework quality and presented actionable suggestions for DL framework developers to improve their code quality." @default.
- W4285097780 created "2022-07-14" @default.
- W4285097780 creator A5013561799 @default.
- W4285097780 creator A5043981758 @default.
- W4285097780 creator A5051747323 @default.
- W4285097780 creator A5053833877 @default.
- W4285097780 date "2022-11-01" @default.
- W4285097780 modified "2023-10-15" @default.
- W4285097780 title "A comprehensive empirical study on bug characteristics of deep learning frameworks" @default.
- W4285097780 cites W1964731418 @default.
- W4285097780 cites W2079317829 @default.
- W4285097780 cites W2082539579 @default.
- W4285097780 cites W2102322333 @default.
- W4285097780 cites W2109156518 @default.
- W4285097780 cites W2113351233 @default.
- W4285097780 cites W2133012565 @default.
- W4285097780 cites W2137267962 @default.
- W4285097780 cites W2141403362 @default.
- W4285097780 cites W2141670850 @default.
- W4285097780 cites W2145071552 @default.
- W4285097780 cites W2146335723 @default.
- W4285097780 cites W2152029707 @default.
- W4285097780 cites W2155243985 @default.
- W4285097780 cites W2187358498 @default.
- W4285097780 cites W2328067583 @default.
- W4285097780 cites W2417608402 @default.
- W4285097780 cites W2471601946 @default.
- W4285097780 cites W2557738935 @default.
- W4285097780 cites W2558381168 @default.
- W4285097780 cites W2739305089 @default.
- W4285097780 cites W2753713840 @default.
- W4285097780 cites W2767260595 @default.
- W4285097780 cites W2850992922 @default.
- W4285097780 cites W2899510293 @default.
- W4285097780 cites W2968594320 @default.
- W4285097780 cites W2971290973 @default.
- W4285097780 cites W2972082064 @default.
- W4285097780 cites W3003877692 @default.
- W4285097780 cites W3035078899 @default.
- W4285097780 cites W3042703469 @default.
- W4285097780 cites W3090643686 @default.
- W4285097780 cites W3096456556 @default.
- W4285097780 cites W3103719551 @default.
- W4285097780 cites W3109004940 @default.
- W4285097780 cites W3124185882 @default.
- W4285097780 cites W3149582851 @default.
- W4285097780 cites W3176459841 @default.
- W4285097780 cites W3177562315 @default.
- W4285097780 doi "https://doi.org/10.1016/j.infsof.2022.107004" @default.
- W4285097780 hasPublicationYear "2022" @default.
- W4285097780 type Work @default.
- W4285097780 citedByCount "4" @default.
- W4285097780 countsByYear W42850977802023 @default.
- W4285097780 crossrefType "journal-article" @default.
- W4285097780 hasAuthorship W4285097780A5013561799 @default.
- W4285097780 hasAuthorship W4285097780A5043981758 @default.
- W4285097780 hasAuthorship W4285097780A5051747323 @default.
- W4285097780 hasAuthorship W4285097780A5053833877 @default.
- W4285097780 hasConcept C105795698 @default.
- W4285097780 hasConcept C108583219 @default.
- W4285097780 hasConcept C115903868 @default.
- W4285097780 hasConcept C120936955 @default.
- W4285097780 hasConcept C127413603 @default.
- W4285097780 hasConcept C154945302 @default.
- W4285097780 hasConcept C201995342 @default.
- W4285097780 hasConcept C2522767166 @default.
- W4285097780 hasConcept C33923547 @default.
- W4285097780 hasConcept C41008148 @default.
- W4285097780 hasConceptScore W4285097780C105795698 @default.
- W4285097780 hasConceptScore W4285097780C108583219 @default.
- W4285097780 hasConceptScore W4285097780C115903868 @default.
- W4285097780 hasConceptScore W4285097780C120936955 @default.
- W4285097780 hasConceptScore W4285097780C127413603 @default.
- W4285097780 hasConceptScore W4285097780C154945302 @default.
- W4285097780 hasConceptScore W4285097780C201995342 @default.
- W4285097780 hasConceptScore W4285097780C2522767166 @default.
- W4285097780 hasConceptScore W4285097780C33923547 @default.
- W4285097780 hasConceptScore W4285097780C41008148 @default.
- W4285097780 hasFunder F4320321001 @default.
- W4285097780 hasFunder F4320326705 @default.
- W4285097780 hasLocation W42850977801 @default.
- W4285097780 hasOpenAccess W4285097780 @default.
- W4285097780 hasPrimaryLocation W42850977801 @default.
- W4285097780 hasRelatedWork W2126887587 @default.
- W4285097780 hasRelatedWork W2731899572 @default.
- W4285097780 hasRelatedWork W2899084033 @default.
- W4285097780 hasRelatedWork W2939353110 @default.
- W4285097780 hasRelatedWork W3009238340 @default.
- W4285097780 hasRelatedWork W3215138031 @default.
- W4285097780 hasRelatedWork W4312962853 @default.
- W4285097780 hasRelatedWork W4321369474 @default.
- W4285097780 hasRelatedWork W4327774331 @default.
- W4285097780 hasRelatedWork W4360585206 @default.
- W4285097780 hasVolume "151" @default.
- W4285097780 isParatext "false" @default.
- W4285097780 isRetracted "false" @default.
- W4285097780 workType "article" @default.