Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285097789> ?p ?o ?g. }
- W4285097789 endingPage "118166" @default.
- W4285097789 startingPage "118166" @default.
- W4285097789 abstract "Vegard's law factor (VLF) and volume size factor (SF) of binary substitutional metallic solid solutions (BSMSS) are crucial in alloy design. However, general models for accurately predicting these structure parameters are still undeveloped. In this work, a kernel ridge regression (KRR) model was developed to predict VLF and SF of BSMSS based on 409 published entries and elemental descriptors. The KRR model achieves an average R2 score of 0.67, an average Pearson coefficient of 0.82 for VLF and an average R2 of 0.80, an average Pearson coefficient of 0.90 for SF among 100 random splits of training/testing dataset. The performances of this KRR model based on training sets without certain solvent/solute elements were also investigated. In addition, an explicit expression was learned by the symbolic transformer, which exhibits prediction efficiency with R2 of 0.8 for VLF and 0.9 for SF. The expression can be interpreted as a physically meaningful 2D descriptor with one component containing size difference between solute and solvent atoms in the pure state while the other one does not. This is helpful to clarify the electronic coupling effect referred in previous studies. The predictions of both ML models are compared with those of density functional theory (DFT) for 37 Fe-based BSMSS (Fe-X). The results show that ML models exhibit higher R2 than that of DFT for the 20 Fe-X with experimental data available, and provide reasonable results for the 17 Fe-X without experimental data." @default.
- W4285097789 created "2022-07-14" @default.
- W4285097789 creator A5025690121 @default.
- W4285097789 creator A5034773520 @default.
- W4285097789 creator A5053825554 @default.
- W4285097789 creator A5058312061 @default.
- W4285097789 creator A5087750967 @default.
- W4285097789 date "2022-09-01" @default.
- W4285097789 modified "2023-10-15" @default.
- W4285097789 title "Machine-learning prediction of Vegard's law factor and volume size factor for binary substitutional metallic solid solutions" @default.
- W4285097789 cites W1700091918 @default.
- W4285097789 cites W1965615638 @default.
- W4285097789 cites W1969515697 @default.
- W4285097789 cites W1973821755 @default.
- W4285097789 cites W1975572657 @default.
- W4285097789 cites W1981368803 @default.
- W4285097789 cites W1981744452 @default.
- W4285097789 cites W1984799590 @default.
- W4285097789 cites W1987190824 @default.
- W4285097789 cites W1989176268 @default.
- W4285097789 cites W1993467253 @default.
- W4285097789 cites W1997919420 @default.
- W4285097789 cites W2001131395 @default.
- W4285097789 cites W2017493932 @default.
- W4285097789 cites W2017726969 @default.
- W4285097789 cites W2018532472 @default.
- W4285097789 cites W2018559328 @default.
- W4285097789 cites W2021151007 @default.
- W4285097789 cites W2029986867 @default.
- W4285097789 cites W2031975877 @default.
- W4285097789 cites W2046339482 @default.
- W4285097789 cites W2053643385 @default.
- W4285097789 cites W2056014140 @default.
- W4285097789 cites W2059947796 @default.
- W4285097789 cites W2062684362 @default.
- W4285097789 cites W2066120296 @default.
- W4285097789 cites W2080528237 @default.
- W4285097789 cites W2080834729 @default.
- W4285097789 cites W2083222334 @default.
- W4285097789 cites W2083685205 @default.
- W4285097789 cites W2089806472 @default.
- W4285097789 cites W2094650248 @default.
- W4285097789 cites W2099506356 @default.
- W4285097789 cites W2100318108 @default.
- W4285097789 cites W2111639451 @default.
- W4285097789 cites W2121945668 @default.
- W4285097789 cites W2139060521 @default.
- W4285097789 cites W2150702944 @default.
- W4285097789 cites W2261108203 @default.
- W4285097789 cites W2464725281 @default.
- W4285097789 cites W2498941985 @default.
- W4285097789 cites W2749099121 @default.
- W4285097789 cites W2773996121 @default.
- W4285097789 cites W2896574266 @default.
- W4285097789 cites W2937681869 @default.
- W4285097789 cites W2940856801 @default.
- W4285097789 cites W2964086161 @default.
- W4285097789 cites W2968923792 @default.
- W4285097789 cites W2970103727 @default.
- W4285097789 cites W2978598459 @default.
- W4285097789 cites W2979043625 @default.
- W4285097789 cites W2992115806 @default.
- W4285097789 cites W3026094172 @default.
- W4285097789 cites W3042344738 @default.
- W4285097789 cites W3098179186 @default.
- W4285097789 cites W3098539674 @default.
- W4285097789 cites W3103566548 @default.
- W4285097789 cites W3150433891 @default.
- W4285097789 cites W3157707063 @default.
- W4285097789 cites W3176989660 @default.
- W4285097789 cites W3183767639 @default.
- W4285097789 cites W3191883141 @default.
- W4285097789 cites W4289236186 @default.
- W4285097789 doi "https://doi.org/10.1016/j.actamat.2022.118166" @default.
- W4285097789 hasPublicationYear "2022" @default.
- W4285097789 type Work @default.
- W4285097789 citedByCount "1" @default.
- W4285097789 countsByYear W42850977892023 @default.
- W4285097789 crossrefType "journal-article" @default.
- W4285097789 hasAuthorship W4285097789A5025690121 @default.
- W4285097789 hasAuthorship W4285097789A5034773520 @default.
- W4285097789 hasAuthorship W4285097789A5053825554 @default.
- W4285097789 hasAuthorship W4285097789A5058312061 @default.
- W4285097789 hasAuthorship W4285097789A5087750967 @default.
- W4285097789 hasConcept C105795698 @default.
- W4285097789 hasConcept C121332964 @default.
- W4285097789 hasConcept C121864883 @default.
- W4285097789 hasConcept C191897082 @default.
- W4285097789 hasConcept C192562407 @default.
- W4285097789 hasConcept C26873012 @default.
- W4285097789 hasConcept C2780026712 @default.
- W4285097789 hasConcept C33923547 @default.
- W4285097789 hasConcept C48372109 @default.
- W4285097789 hasConcept C55078378 @default.
- W4285097789 hasConcept C94375191 @default.
- W4285097789 hasConcept C97355855 @default.
- W4285097789 hasConceptScore W4285097789C105795698 @default.
- W4285097789 hasConceptScore W4285097789C121332964 @default.