Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285102014> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4285102014 abstract "Missing values are an unavoidable problem for classification tasks of machine learning in medical data. With the rapid development of the medical system, large scale medical data is increasing. Missing values increase the difficulty of mining hidden but useful information in these medical datasets. Deletion and imputation methods are the most popular methods for dealing with missing values. Existing studies ignored to compare and discuss the deletion and imputation methods of missing values under the row missing rate and the total missing rate. Meanwhile, they rarely used experiment data sets that are mixed-type and large scale. In this work, medical data sets of various sizes and mixed-type are used. At the same time, performance differences of deletion and imputation methods are compared under the MCAR (Missing Completely At Random) mechanism in the baseline task using LR (Linear Regression) and SVM (Support Vector Machine) classifiers for classification with the same row and total missing rates. Experimental results show that under the MCAR missing mechanism, the performance of two types of processing methods is related to the size of datasets and missing rates. As the increasing of missing rate, the performance of two types for processing missing values decreases, but the deletion method decreases faster, and the imputation methods based on machine learning have more stable and better classification performance on average. In addition, small data sets are easily affected by processing methods of missing values." @default.
- W4285102014 created "2022-07-14" @default.
- W4285102014 creator A5049571373 @default.
- W4285102014 creator A5057052297 @default.
- W4285102014 creator A5062632545 @default.
- W4285102014 creator A5073201403 @default.
- W4285102014 creator A5085142676 @default.
- W4285102014 date "2022-05-27" @default.
- W4285102014 modified "2023-09-26" @default.
- W4285102014 title "Missing Values for Classification of Machine Learning in Medical data" @default.
- W4285102014 cites W1968114652 @default.
- W4285102014 cites W1993220086 @default.
- W4285102014 cites W2011487780 @default.
- W4285102014 cites W2031340137 @default.
- W4285102014 cites W2032441932 @default.
- W4285102014 cites W2032627149 @default.
- W4285102014 cites W2060440228 @default.
- W4285102014 cites W2061273963 @default.
- W4285102014 cites W2063876071 @default.
- W4285102014 cites W2110828928 @default.
- W4285102014 cites W2111104102 @default.
- W4285102014 cites W2143373012 @default.
- W4285102014 cites W2146332392 @default.
- W4285102014 cites W2508056609 @default.
- W4285102014 cites W2797907410 @default.
- W4285102014 cites W2884236907 @default.
- W4285102014 cites W2995235877 @default.
- W4285102014 cites W3048301386 @default.
- W4285102014 cites W3112964197 @default.
- W4285102014 cites W3173093567 @default.
- W4285102014 cites W99824780 @default.
- W4285102014 doi "https://doi.org/10.1109/icaibd55127.2022.9820448" @default.
- W4285102014 hasPublicationYear "2022" @default.
- W4285102014 type Work @default.
- W4285102014 citedByCount "1" @default.
- W4285102014 countsByYear W42851020142022 @default.
- W4285102014 crossrefType "proceedings-article" @default.
- W4285102014 hasAuthorship W4285102014A5049571373 @default.
- W4285102014 hasAuthorship W4285102014A5057052297 @default.
- W4285102014 hasAuthorship W4285102014A5062632545 @default.
- W4285102014 hasAuthorship W4285102014A5073201403 @default.
- W4285102014 hasAuthorship W4285102014A5085142676 @default.
- W4285102014 hasConcept C119857082 @default.
- W4285102014 hasConcept C12267149 @default.
- W4285102014 hasConcept C124101348 @default.
- W4285102014 hasConcept C154945302 @default.
- W4285102014 hasConcept C41008148 @default.
- W4285102014 hasConcept C58041806 @default.
- W4285102014 hasConcept C9357733 @default.
- W4285102014 hasConceptScore W4285102014C119857082 @default.
- W4285102014 hasConceptScore W4285102014C12267149 @default.
- W4285102014 hasConceptScore W4285102014C124101348 @default.
- W4285102014 hasConceptScore W4285102014C154945302 @default.
- W4285102014 hasConceptScore W4285102014C41008148 @default.
- W4285102014 hasConceptScore W4285102014C58041806 @default.
- W4285102014 hasConceptScore W4285102014C9357733 @default.
- W4285102014 hasLocation W42851020141 @default.
- W4285102014 hasOpenAccess W4285102014 @default.
- W4285102014 hasPrimaryLocation W42851020141 @default.
- W4285102014 hasRelatedWork W1513289763 @default.
- W4285102014 hasRelatedWork W1973721774 @default.
- W4285102014 hasRelatedWork W2386525483 @default.
- W4285102014 hasRelatedWork W2541565311 @default.
- W4285102014 hasRelatedWork W2574666645 @default.
- W4285102014 hasRelatedWork W2751555317 @default.
- W4285102014 hasRelatedWork W3049453136 @default.
- W4285102014 hasRelatedWork W3179858851 @default.
- W4285102014 hasRelatedWork W4205958290 @default.
- W4285102014 hasRelatedWork W569810835 @default.
- W4285102014 isParatext "false" @default.
- W4285102014 isRetracted "false" @default.
- W4285102014 workType "article" @default.