Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285102080> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4285102080 abstract "Cancer metastasis is a complex process that usually shows a preference for certain organs, with the brain, bone, liver, and lung being the four most common metastatic organs. Studying the metastatic characteristics of cancer with great importance for the clinical diagnosis of cancer and the treatment of patients with advanced cancer. In this paper, we propose CM-Predict, a method for predicting metastatic organs in cancer. Take advantage of the feature that the co-expression network of genes with the same type of cancer is consistent, build a framework for feature extraction using reference networks and perturbation networks, and use the extracted features to classify samples with cancer metastasis. We compared CM-Predict with other classification models, for the cancer metastasis classification task, CM-Predict significantly outperformed the four machine learning methods in the other models in the BLCA, ESCA, and LIHC datasets. We also used a new statistical analysis method for enrichment analysis of the features screened by CM-Predict, which provides a new means to elucidate the mechanisms of cancer metastasis." @default.
- W4285102080 created "2022-07-14" @default.
- W4285102080 creator A5032087163 @default.
- W4285102080 creator A5035321743 @default.
- W4285102080 creator A5054558506 @default.
- W4285102080 date "2022-05-27" @default.
- W4285102080 modified "2023-10-16" @default.
- W4285102080 title "CM-Predict: A Classification Model to Predict Cancer Metastasis Based on Co-expression Network" @default.
- W4285102080 cites W1986471913 @default.
- W4285102080 cites W1992762981 @default.
- W4285102080 cites W2036617265 @default.
- W4285102080 cites W2054286018 @default.
- W4285102080 cites W2057151160 @default.
- W4285102080 cites W2080232352 @default.
- W4285102080 cites W2082833890 @default.
- W4285102080 cites W2130410032 @default.
- W4285102080 cites W2173990401 @default.
- W4285102080 cites W2329659234 @default.
- W4285102080 cites W2508622936 @default.
- W4285102080 cites W2898068044 @default.
- W4285102080 cites W2935087011 @default.
- W4285102080 cites W2951308389 @default.
- W4285102080 cites W3147586197 @default.
- W4285102080 doi "https://doi.org/10.1109/icaibd55127.2022.9820413" @default.
- W4285102080 hasPublicationYear "2022" @default.
- W4285102080 type Work @default.
- W4285102080 citedByCount "0" @default.
- W4285102080 crossrefType "proceedings-article" @default.
- W4285102080 hasAuthorship W4285102080A5032087163 @default.
- W4285102080 hasAuthorship W4285102080A5035321743 @default.
- W4285102080 hasAuthorship W4285102080A5054558506 @default.
- W4285102080 hasConcept C119857082 @default.
- W4285102080 hasConcept C121608353 @default.
- W4285102080 hasConcept C126322002 @default.
- W4285102080 hasConcept C138885662 @default.
- W4285102080 hasConcept C143998085 @default.
- W4285102080 hasConcept C153180895 @default.
- W4285102080 hasConcept C154945302 @default.
- W4285102080 hasConcept C2776256026 @default.
- W4285102080 hasConcept C2776401178 @default.
- W4285102080 hasConcept C2779013556 @default.
- W4285102080 hasConcept C2992691968 @default.
- W4285102080 hasConcept C41008148 @default.
- W4285102080 hasConcept C41895202 @default.
- W4285102080 hasConcept C52622490 @default.
- W4285102080 hasConcept C70721500 @default.
- W4285102080 hasConcept C71924100 @default.
- W4285102080 hasConcept C86803240 @default.
- W4285102080 hasConceptScore W4285102080C119857082 @default.
- W4285102080 hasConceptScore W4285102080C121608353 @default.
- W4285102080 hasConceptScore W4285102080C126322002 @default.
- W4285102080 hasConceptScore W4285102080C138885662 @default.
- W4285102080 hasConceptScore W4285102080C143998085 @default.
- W4285102080 hasConceptScore W4285102080C153180895 @default.
- W4285102080 hasConceptScore W4285102080C154945302 @default.
- W4285102080 hasConceptScore W4285102080C2776256026 @default.
- W4285102080 hasConceptScore W4285102080C2776401178 @default.
- W4285102080 hasConceptScore W4285102080C2779013556 @default.
- W4285102080 hasConceptScore W4285102080C2992691968 @default.
- W4285102080 hasConceptScore W4285102080C41008148 @default.
- W4285102080 hasConceptScore W4285102080C41895202 @default.
- W4285102080 hasConceptScore W4285102080C52622490 @default.
- W4285102080 hasConceptScore W4285102080C70721500 @default.
- W4285102080 hasConceptScore W4285102080C71924100 @default.
- W4285102080 hasConceptScore W4285102080C86803240 @default.
- W4285102080 hasLocation W42851020801 @default.
- W4285102080 hasOpenAccess W4285102080 @default.
- W4285102080 hasPrimaryLocation W42851020801 @default.
- W4285102080 hasRelatedWork W1964120219 @default.
- W4285102080 hasRelatedWork W2016461833 @default.
- W4285102080 hasRelatedWork W2136054869 @default.
- W4285102080 hasRelatedWork W2144059113 @default.
- W4285102080 hasRelatedWork W2146076056 @default.
- W4285102080 hasRelatedWork W2314032833 @default.
- W4285102080 hasRelatedWork W2546942002 @default.
- W4285102080 hasRelatedWork W2811390910 @default.
- W4285102080 hasRelatedWork W3003836766 @default.
- W4285102080 hasRelatedWork W3197541072 @default.
- W4285102080 isParatext "false" @default.
- W4285102080 isRetracted "false" @default.
- W4285102080 workType "article" @default.