Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285103044> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4285103044 abstract "Deep Learning is being widely used to identify and segment various 2D and 3D structures in voxelized data in fields such as robotics and medical imaging. Automated object detection and segmentation has had a rich history in semicon inspection and defect detection technologies for past few decades. Deep learning-based object detection and image segmentation has the potential to further improve defect detection accuracy and reduce manpower required for the quality inspection process. We develop a novel framework that utilizes the advancements in deep learning-based object detection and image segmentation techniques to leverage on partial labeled data and remaining unlabeled data to significantly improve the performance of locating microscopic bumps and defects such as voids for the defect detection process. We apply our Semi-Supervised Learning approach on various buried structures such as memory bumps and logic bumps. We briefly describe our fabrication and scanning process and thereafter, explain our approach in locating these different structures in 3D scans in detail. We extract the virtual 2D slices from 3D scans, perform Semi-Supervised object detection and image segmentation to classify each pixel of these individual slices into solders, voids, Cu-Pillars, and Cu-Pads. We compare our approach with state-of-the-art fully supervised techniques and perform a thorough analysis to discuss the advantages and disadvantages of our approach in both object detection and image segmentation steps." @default.
- W4285103044 created "2022-07-14" @default.
- W4285103044 creator A5020941607 @default.
- W4285103044 creator A5041754243 @default.
- W4285103044 creator A5048247182 @default.
- W4285103044 creator A5049106691 @default.
- W4285103044 creator A5056421498 @default.
- W4285103044 creator A5059444413 @default.
- W4285103044 creator A5068391079 @default.
- W4285103044 creator A5085704280 @default.
- W4285103044 date "2022-05-01" @default.
- W4285103044 modified "2023-09-27" @default.
- W4285103044 title "Automated Detection and Segmentation of HBMs in 3D X-ray Images using Semi-Supervised Deep Learning" @default.
- W4285103044 cites W2531793753 @default.
- W4285103044 cites W2778764040 @default.
- W4285103044 cites W2990493316 @default.
- W4285103044 cites W3003258918 @default.
- W4285103044 cites W3089903748 @default.
- W4285103044 cites W3090739380 @default.
- W4285103044 cites W3116529608 @default.
- W4285103044 cites W3120562181 @default.
- W4285103044 cites W3127087905 @default.
- W4285103044 cites W3137054179 @default.
- W4285103044 cites W3157653192 @default.
- W4285103044 cites W3188464007 @default.
- W4285103044 cites W3191101389 @default.
- W4285103044 cites W3208452101 @default.
- W4285103044 doi "https://doi.org/10.1109/ectc51906.2022.00297" @default.
- W4285103044 hasPublicationYear "2022" @default.
- W4285103044 type Work @default.
- W4285103044 citedByCount "3" @default.
- W4285103044 countsByYear W42851030442022 @default.
- W4285103044 countsByYear W42851030442023 @default.
- W4285103044 crossrefType "proceedings-article" @default.
- W4285103044 hasAuthorship W4285103044A5020941607 @default.
- W4285103044 hasAuthorship W4285103044A5041754243 @default.
- W4285103044 hasAuthorship W4285103044A5048247182 @default.
- W4285103044 hasAuthorship W4285103044A5049106691 @default.
- W4285103044 hasAuthorship W4285103044A5056421498 @default.
- W4285103044 hasAuthorship W4285103044A5059444413 @default.
- W4285103044 hasAuthorship W4285103044A5068391079 @default.
- W4285103044 hasAuthorship W4285103044A5085704280 @default.
- W4285103044 hasConcept C108583219 @default.
- W4285103044 hasConcept C111919701 @default.
- W4285103044 hasConcept C124504099 @default.
- W4285103044 hasConcept C136389625 @default.
- W4285103044 hasConcept C153083717 @default.
- W4285103044 hasConcept C153180895 @default.
- W4285103044 hasConcept C154945302 @default.
- W4285103044 hasConcept C160633673 @default.
- W4285103044 hasConcept C2776151529 @default.
- W4285103044 hasConcept C31972630 @default.
- W4285103044 hasConcept C41008148 @default.
- W4285103044 hasConcept C50644808 @default.
- W4285103044 hasConcept C89600930 @default.
- W4285103044 hasConcept C98045186 @default.
- W4285103044 hasConceptScore W4285103044C108583219 @default.
- W4285103044 hasConceptScore W4285103044C111919701 @default.
- W4285103044 hasConceptScore W4285103044C124504099 @default.
- W4285103044 hasConceptScore W4285103044C136389625 @default.
- W4285103044 hasConceptScore W4285103044C153083717 @default.
- W4285103044 hasConceptScore W4285103044C153180895 @default.
- W4285103044 hasConceptScore W4285103044C154945302 @default.
- W4285103044 hasConceptScore W4285103044C160633673 @default.
- W4285103044 hasConceptScore W4285103044C2776151529 @default.
- W4285103044 hasConceptScore W4285103044C31972630 @default.
- W4285103044 hasConceptScore W4285103044C41008148 @default.
- W4285103044 hasConceptScore W4285103044C50644808 @default.
- W4285103044 hasConceptScore W4285103044C89600930 @default.
- W4285103044 hasConceptScore W4285103044C98045186 @default.
- W4285103044 hasLocation W42851030441 @default.
- W4285103044 hasOpenAccess W4285103044 @default.
- W4285103044 hasPrimaryLocation W42851030441 @default.
- W4285103044 hasRelatedWork W1669643531 @default.
- W4285103044 hasRelatedWork W1721780360 @default.
- W4285103044 hasRelatedWork W2004370856 @default.
- W4285103044 hasRelatedWork W2090093270 @default.
- W4285103044 hasRelatedWork W2122581818 @default.
- W4285103044 hasRelatedWork W2739874619 @default.
- W4285103044 hasRelatedWork W2790662084 @default.
- W4285103044 hasRelatedWork W2948658236 @default.
- W4285103044 hasRelatedWork W4285103044 @default.
- W4285103044 hasRelatedWork W4312857205 @default.
- W4285103044 isParatext "false" @default.
- W4285103044 isRetracted "false" @default.
- W4285103044 workType "article" @default.