Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285104145> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4285104145 endingPage "19" @default.
- W4285104145 startingPage "19" @default.
- W4285104145 abstract "This paper proposes a vehicle types classification modelfrom video streams for improving Traffic Flow Analysis (TFA) systems. A Video Content-based Vehicles Classification (VC-VC) model is used to support optimization for traffic signal control via online identification of vehicle types.The VC-VC model extends several methods to extract TFA parameters, including the background image processing, object detection, size of the object measurement, attention to the area of interest, objects clash or overlap handling, and tracking objects. The VC-VC model undergoes the main processing phases: preprocessing, segmentation, classification, and tracks. The main video and image processing methods are the Gaussian function, active contour, bilateral filter, and Kalman filter. The model is evaluated based on a comparison between the actual classification by the model and ground truth. Four formulas are applied in this project to evaluate the VC-VC model’s performance: error, average error, accuracy, and precision. The valid classification is counted to show the overall results. The VC-VC model detects and classifies vehicles accurately. For three tested videos, it achieves a high classification accuracy of 85.94% on average. The precession for the classification of the three tested videos is 92.87%. The results show that video 1 and video 3 have the most accurate vehicle classification results compared to video 2. It is because video 2 has more difficult camera positioning and recording angle and more challenging scenarios than the other two. The results show that it is difficult to classify vehicles based on objects size measures. The object's size is adjustable based on the camera altitude and zoom setting. This adjustment is affecting the accuracy of vehicles classification." @default.
- W4285104145 created "2022-07-14" @default.
- W4285104145 creator A5012205050 @default.
- W4285104145 creator A5016511172 @default.
- W4285104145 creator A5062129133 @default.
- W4285104145 creator A5068502615 @default.
- W4285104145 creator A5074204664 @default.
- W4285104145 creator A5091820822 @default.
- W4285104145 date "2022-03-25" @default.
- W4285104145 modified "2023-09-30" @default.
- W4285104145 title "Classifying Vehicle Types from Video Streams for Traffic Flow Analysis Systems" @default.
- W4285104145 doi "https://doi.org/10.30630/joiv.6.1.739" @default.
- W4285104145 hasPublicationYear "2022" @default.
- W4285104145 type Work @default.
- W4285104145 citedByCount "0" @default.
- W4285104145 crossrefType "journal-article" @default.
- W4285104145 hasAuthorship W4285104145A5012205050 @default.
- W4285104145 hasAuthorship W4285104145A5016511172 @default.
- W4285104145 hasAuthorship W4285104145A5062129133 @default.
- W4285104145 hasAuthorship W4285104145A5068502615 @default.
- W4285104145 hasAuthorship W4285104145A5074204664 @default.
- W4285104145 hasAuthorship W4285104145A5091820822 @default.
- W4285104145 hasBestOaLocation W42851041451 @default.
- W4285104145 hasConcept C153180895 @default.
- W4285104145 hasConcept C154945302 @default.
- W4285104145 hasConcept C157286648 @default.
- W4285104145 hasConcept C202474056 @default.
- W4285104145 hasConcept C31972630 @default.
- W4285104145 hasConcept C34736171 @default.
- W4285104145 hasConcept C41008148 @default.
- W4285104145 hasConcept C65483669 @default.
- W4285104145 hasConcept C89600930 @default.
- W4285104145 hasConceptScore W4285104145C153180895 @default.
- W4285104145 hasConceptScore W4285104145C154945302 @default.
- W4285104145 hasConceptScore W4285104145C157286648 @default.
- W4285104145 hasConceptScore W4285104145C202474056 @default.
- W4285104145 hasConceptScore W4285104145C31972630 @default.
- W4285104145 hasConceptScore W4285104145C34736171 @default.
- W4285104145 hasConceptScore W4285104145C41008148 @default.
- W4285104145 hasConceptScore W4285104145C65483669 @default.
- W4285104145 hasConceptScore W4285104145C89600930 @default.
- W4285104145 hasIssue "1" @default.
- W4285104145 hasLocation W42851041451 @default.
- W4285104145 hasOpenAccess W4285104145 @default.
- W4285104145 hasPrimaryLocation W42851041451 @default.
- W4285104145 hasRelatedWork W1669643531 @default.
- W4285104145 hasRelatedWork W1966005655 @default.
- W4285104145 hasRelatedWork W2005437358 @default.
- W4285104145 hasRelatedWork W2068162367 @default.
- W4285104145 hasRelatedWork W2148258325 @default.
- W4285104145 hasRelatedWork W2348820921 @default.
- W4285104145 hasRelatedWork W2517104666 @default.
- W4285104145 hasRelatedWork W2574246024 @default.
- W4285104145 hasRelatedWork W2789578481 @default.
- W4285104145 hasRelatedWork W4282841072 @default.
- W4285104145 hasVolume "6" @default.
- W4285104145 isParatext "false" @default.
- W4285104145 isRetracted "false" @default.
- W4285104145 workType "article" @default.