Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285105969> ?p ?o ?g. }
- W4285105969 endingPage "56248" @default.
- W4285105969 startingPage "56232" @default.
- W4285105969 abstract "Cryptocurrency has recently attracted substantial interest from investors due to its underlying philosophy of decentralization and transparency. Considering cryptocurrency’s volatility and unique characteristics, accurate price prediction is essential for developing successful investment strategies. To this end, the authors of this work propose a novel framework that predicts the price of Bitcoin (BTC), a dominant cryptocurrency. For stable prediction performance in unseen price range, the change point detection technique is employed. In particular, it is used to segment time-series data so that normalization can be separately conducted based on segmentation. In addition, on-chain data, the unique records listed on the blockchain that are inherent in cryptocurrencies, are collected and utilized as input variables to predict prices. Furthermore, this work proposes self-attention-based multiple long short-term memory (SAM-LSTM), which consists of multiple LSTM modules for on-chain variable groups and the attention mechanism, for the prediction model. Experiments with real-world BTC price data and various method setups have proven the proposed framework’s effectiveness in BTC price prediction. The results are promising, with the highest MAE, RMSE, MSE, and MAPE values of 0.3462, 0.5035, 0.2536, and 1.3251, respectively." @default.
- W4285105969 created "2022-07-14" @default.
- W4285105969 creator A5036187517 @default.
- W4285105969 creator A5048352340 @default.
- W4285105969 creator A5049525333 @default.
- W4285105969 creator A5049916051 @default.
- W4285105969 date "2022-01-01" @default.
- W4285105969 modified "2023-09-30" @default.
- W4285105969 title "A Deep Learning-Based Cryptocurrency Price Prediction Model That Uses On-Chain Data" @default.
- W4285105969 cites W1482192753 @default.
- W4285105969 cites W1618896827 @default.
- W4285105969 cites W1689711448 @default.
- W4285105969 cites W1975684011 @default.
- W4285105969 cites W2064675550 @default.
- W4285105969 cites W2067210253 @default.
- W4285105969 cites W2097689232 @default.
- W4285105969 cites W2104482512 @default.
- W4285105969 cites W2113442785 @default.
- W4285105969 cites W2128387858 @default.
- W4285105969 cites W2150427470 @default.
- W4285105969 cites W2167311767 @default.
- W4285105969 cites W2182264243 @default.
- W4285105969 cites W2330210193 @default.
- W4285105969 cites W2515822248 @default.
- W4285105969 cites W2769638291 @default.
- W4285105969 cites W2784381726 @default.
- W4285105969 cites W2799918576 @default.
- W4285105969 cites W2803148772 @default.
- W4285105969 cites W2810209452 @default.
- W4285105969 cites W2811378689 @default.
- W4285105969 cites W2900783610 @default.
- W4285105969 cites W2900967578 @default.
- W4285105969 cites W2962739339 @default.
- W4285105969 cites W2963467914 @default.
- W4285105969 cites W2967732991 @default.
- W4285105969 cites W2970679147 @default.
- W4285105969 cites W2973382223 @default.
- W4285105969 cites W2974685792 @default.
- W4285105969 cites W2995310170 @default.
- W4285105969 cites W2998001460 @default.
- W4285105969 cites W3005941557 @default.
- W4285105969 cites W3007471723 @default.
- W4285105969 cites W3011765343 @default.
- W4285105969 cites W3021511960 @default.
- W4285105969 cites W3022003403 @default.
- W4285105969 cites W3081572486 @default.
- W4285105969 cites W3088545074 @default.
- W4285105969 cites W3089782038 @default.
- W4285105969 cites W3093982423 @default.
- W4285105969 cites W3098561233 @default.
- W4285105969 cites W3098618426 @default.
- W4285105969 cites W3102010717 @default.
- W4285105969 cites W3138861928 @default.
- W4285105969 cites W3146366485 @default.
- W4285105969 cites W3159769297 @default.
- W4285105969 cites W3170800272 @default.
- W4285105969 cites W3178576742 @default.
- W4285105969 cites W3179595367 @default.
- W4285105969 cites W3202074074 @default.
- W4285105969 cites W3204830977 @default.
- W4285105969 cites W4206464283 @default.
- W4285105969 cites W4206803535 @default.
- W4285105969 cites W4207056801 @default.
- W4285105969 cites W4210423312 @default.
- W4285105969 cites W4210616753 @default.
- W4285105969 cites W4226185762 @default.
- W4285105969 cites W4229815470 @default.
- W4285105969 cites W4238553616 @default.
- W4285105969 doi "https://doi.org/10.1109/access.2022.3177888" @default.
- W4285105969 hasPublicationYear "2022" @default.
- W4285105969 type Work @default.
- W4285105969 citedByCount "12" @default.
- W4285105969 countsByYear W42851059692022 @default.
- W4285105969 countsByYear W42851059692023 @default.
- W4285105969 crossrefType "journal-article" @default.
- W4285105969 hasAuthorship W4285105969A5036187517 @default.
- W4285105969 hasAuthorship W4285105969A5048352340 @default.
- W4285105969 hasAuthorship W4285105969A5049525333 @default.
- W4285105969 hasAuthorship W4285105969A5049916051 @default.
- W4285105969 hasBestOaLocation W42851059691 @default.
- W4285105969 hasConcept C105795698 @default.
- W4285105969 hasConcept C119857082 @default.
- W4285105969 hasConcept C124101348 @default.
- W4285105969 hasConcept C136886441 @default.
- W4285105969 hasConcept C139945424 @default.
- W4285105969 hasConcept C144024400 @default.
- W4285105969 hasConcept C149782125 @default.
- W4285105969 hasConcept C154945302 @default.
- W4285105969 hasConcept C162324750 @default.
- W4285105969 hasConcept C167085575 @default.
- W4285105969 hasConcept C180706569 @default.
- W4285105969 hasConcept C19165224 @default.
- W4285105969 hasConcept C2780233690 @default.
- W4285105969 hasConcept C33923547 @default.
- W4285105969 hasConcept C38652104 @default.
- W4285105969 hasConcept C41008148 @default.
- W4285105969 hasConcept C67186912 @default.
- W4285105969 hasConcept C75684735 @default.