Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285106486> ?p ?o ?g. }
- W4285106486 endingPage "66237" @default.
- W4285106486 startingPage "66227" @default.
- W4285106486 abstract "Cross-database micro-expression recognition (CDMER) under semi supervised conditions is a difficult task, where the target (testing) and source (training) samples come from different micro-expression (ME) databases, resulting in the inconsistency of the feature distributions between each other, and hence affecting the performance of many existing MER methods. To address this problem, we propose a dual-stream convolutional neural network (DSCNN) for dealing with CDMER tasks. In the DSCNN, two stream branches are designed to study temporal and facial region cues in ME samples with the goal of recognizing MEs. In addition, in the training process, the domain discrepancy loss is used to enforce the target and source samples to have similar feature distributions in some layers of the DSCNN. Extensive CDMER experiments are conducted to evaluate the DSCNN. The results show that our proposed DSCNN model achieves a higher recognition accuracy when compared with some representative CDMER methods." @default.
- W4285106486 created "2022-07-14" @default.
- W4285106486 creator A5027316177 @default.
- W4285106486 creator A5036446909 @default.
- W4285106486 creator A5064150384 @default.
- W4285106486 creator A5069030264 @default.
- W4285106486 creator A5069292664 @default.
- W4285106486 creator A5084135786 @default.
- W4285106486 date "2022-01-01" @default.
- W4285106486 modified "2023-10-14" @default.
- W4285106486 title "Cross-Database Micro-Expression Recognition Based on a Dual-Stream Convolutional Neural Network" @default.
- W4285106486 cites W1498436455 @default.
- W4285106486 cites W1677182931 @default.
- W4285106486 cites W1722318740 @default.
- W4285106486 cites W2006426145 @default.
- W4285106486 cites W2008635359 @default.
- W4285106486 cites W2031342017 @default.
- W4285106486 cites W2044106642 @default.
- W4285106486 cites W2051676197 @default.
- W4285106486 cites W2059068649 @default.
- W4285106486 cites W2074027098 @default.
- W4285106486 cites W2087977130 @default.
- W4285106486 cites W2089468765 @default.
- W4285106486 cites W2104068492 @default.
- W4285106486 cites W2104094955 @default.
- W4285106486 cites W2113087918 @default.
- W4285106486 cites W2115403315 @default.
- W4285106486 cites W2139916508 @default.
- W4285106486 cites W2164943005 @default.
- W4285106486 cites W2237362194 @default.
- W4285106486 cites W2246249023 @default.
- W4285106486 cites W2251756709 @default.
- W4285106486 cites W2263218431 @default.
- W4285106486 cites W2264829898 @default.
- W4285106486 cites W2326887180 @default.
- W4285106486 cites W2478411578 @default.
- W4285106486 cites W2553945526 @default.
- W4285106486 cites W2586390329 @default.
- W4285106486 cites W2623355927 @default.
- W4285106486 cites W2726381870 @default.
- W4285106486 cites W2741039239 @default.
- W4285106486 cites W2793245122 @default.
- W4285106486 cites W2795270851 @default.
- W4285106486 cites W2807841289 @default.
- W4285106486 cites W2808064875 @default.
- W4285106486 cites W2808103905 @default.
- W4285106486 cites W2936389952 @default.
- W4285106486 cites W2943102280 @default.
- W4285106486 cites W2955133745 @default.
- W4285106486 cites W2963230974 @default.
- W4285106486 cites W2964606879 @default.
- W4285106486 cites W2986458878 @default.
- W4285106486 cites W3016260756 @default.
- W4285106486 cites W3080756971 @default.
- W4285106486 cites W3096596051 @default.
- W4285106486 cites W3103539074 @default.
- W4285106486 cites W3129176834 @default.
- W4285106486 cites W3165677335 @default.
- W4285106486 doi "https://doi.org/10.1109/access.2022.3185132" @default.
- W4285106486 hasPublicationYear "2022" @default.
- W4285106486 type Work @default.
- W4285106486 citedByCount "6" @default.
- W4285106486 countsByYear W42851064862023 @default.
- W4285106486 crossrefType "journal-article" @default.
- W4285106486 hasAuthorship W4285106486A5027316177 @default.
- W4285106486 hasAuthorship W4285106486A5036446909 @default.
- W4285106486 hasAuthorship W4285106486A5064150384 @default.
- W4285106486 hasAuthorship W4285106486A5069030264 @default.
- W4285106486 hasAuthorship W4285106486A5069292664 @default.
- W4285106486 hasAuthorship W4285106486A5084135786 @default.
- W4285106486 hasBestOaLocation W42851064861 @default.
- W4285106486 hasConcept C119857082 @default.
- W4285106486 hasConcept C124101348 @default.
- W4285106486 hasConcept C124952713 @default.
- W4285106486 hasConcept C134306372 @default.
- W4285106486 hasConcept C138885662 @default.
- W4285106486 hasConcept C142362112 @default.
- W4285106486 hasConcept C153180895 @default.
- W4285106486 hasConcept C154945302 @default.
- W4285106486 hasConcept C162324750 @default.
- W4285106486 hasConcept C187736073 @default.
- W4285106486 hasConcept C199360897 @default.
- W4285106486 hasConcept C2776401178 @default.
- W4285106486 hasConcept C2780451532 @default.
- W4285106486 hasConcept C2780980858 @default.
- W4285106486 hasConcept C33923547 @default.
- W4285106486 hasConcept C36503486 @default.
- W4285106486 hasConcept C41008148 @default.
- W4285106486 hasConcept C41895202 @default.
- W4285106486 hasConcept C50644808 @default.
- W4285106486 hasConcept C52622490 @default.
- W4285106486 hasConcept C77088390 @default.
- W4285106486 hasConcept C81363708 @default.
- W4285106486 hasConcept C90559484 @default.
- W4285106486 hasConceptScore W4285106486C119857082 @default.
- W4285106486 hasConceptScore W4285106486C124101348 @default.
- W4285106486 hasConceptScore W4285106486C124952713 @default.
- W4285106486 hasConceptScore W4285106486C134306372 @default.