Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285108239> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4285108239 endingPage "1131" @default.
- W4285108239 startingPage "1126" @default.
- W4285108239 abstract "The proper selection of a demand forecasting method is directly linked to the success of supply chain management (SCM). However, today’s manufacturing companies are confronted with uncertain and dynamic markets. Consequently, classical statistical methods are not always appropriate for accurate and reliable forecasting. Algorithms of Artificial intelligence (AI) are currently used to improve statistical methods. Existing literature only gives a very general overview of the AI methods used in combination with demand forecasting. This paper provides an analysis of the AI methods published in the last five years (2017-2021). Furthermore, a classification is presented by clustering the AI methods in order to define the trend of the methods applied. Finally, a classification of the different AI methods according to the dimensionality of data, volume of data, and time horizon of the forecast is presented. The goal is to support the selection of the appropriate AI method to optimize demand forecasting." @default.
- W4285108239 created "2022-07-14" @default.
- W4285108239 creator A5042745722 @default.
- W4285108239 creator A5054541435 @default.
- W4285108239 creator A5070960860 @default.
- W4285108239 date "2022-01-01" @default.
- W4285108239 modified "2023-10-10" @default.
- W4285108239 title "Review and analysis of artificial intelligence methods for demand forecasting in supply chain management" @default.
- W4285108239 cites W1988277750 @default.
- W4285108239 cites W2118023920 @default.
- W4285108239 cites W2587761693 @default.
- W4285108239 cites W2590982766 @default.
- W4285108239 cites W2796818356 @default.
- W4285108239 cites W2845527733 @default.
- W4285108239 cites W2944850769 @default.
- W4285108239 cites W2956111096 @default.
- W4285108239 cites W2964523010 @default.
- W4285108239 cites W2980576170 @default.
- W4285108239 cites W2996986862 @default.
- W4285108239 cites W2997788383 @default.
- W4285108239 cites W3008458319 @default.
- W4285108239 cites W3047327247 @default.
- W4285108239 cites W3084420001 @default.
- W4285108239 cites W3096444967 @default.
- W4285108239 cites W3109365691 @default.
- W4285108239 cites W3158268105 @default.
- W4285108239 doi "https://doi.org/10.1016/j.procir.2022.05.119" @default.
- W4285108239 hasPublicationYear "2022" @default.
- W4285108239 type Work @default.
- W4285108239 citedByCount "10" @default.
- W4285108239 countsByYear W42851082392023 @default.
- W4285108239 crossrefType "journal-article" @default.
- W4285108239 hasAuthorship W4285108239A5042745722 @default.
- W4285108239 hasAuthorship W4285108239A5054541435 @default.
- W4285108239 hasAuthorship W4285108239A5070960860 @default.
- W4285108239 hasBestOaLocation W42851082391 @default.
- W4285108239 hasConcept C108713360 @default.
- W4285108239 hasConcept C111030470 @default.
- W4285108239 hasConcept C119857082 @default.
- W4285108239 hasConcept C120330832 @default.
- W4285108239 hasConcept C124101348 @default.
- W4285108239 hasConcept C127413603 @default.
- W4285108239 hasConcept C154945302 @default.
- W4285108239 hasConcept C161657586 @default.
- W4285108239 hasConcept C162324750 @default.
- W4285108239 hasConcept C175444787 @default.
- W4285108239 hasConcept C17744445 @default.
- W4285108239 hasConcept C193809577 @default.
- W4285108239 hasConcept C199539241 @default.
- W4285108239 hasConcept C41008148 @default.
- W4285108239 hasConcept C42475967 @default.
- W4285108239 hasConcept C44104985 @default.
- W4285108239 hasConcept C73555534 @default.
- W4285108239 hasConcept C81917197 @default.
- W4285108239 hasConceptScore W4285108239C108713360 @default.
- W4285108239 hasConceptScore W4285108239C111030470 @default.
- W4285108239 hasConceptScore W4285108239C119857082 @default.
- W4285108239 hasConceptScore W4285108239C120330832 @default.
- W4285108239 hasConceptScore W4285108239C124101348 @default.
- W4285108239 hasConceptScore W4285108239C127413603 @default.
- W4285108239 hasConceptScore W4285108239C154945302 @default.
- W4285108239 hasConceptScore W4285108239C161657586 @default.
- W4285108239 hasConceptScore W4285108239C162324750 @default.
- W4285108239 hasConceptScore W4285108239C175444787 @default.
- W4285108239 hasConceptScore W4285108239C17744445 @default.
- W4285108239 hasConceptScore W4285108239C193809577 @default.
- W4285108239 hasConceptScore W4285108239C199539241 @default.
- W4285108239 hasConceptScore W4285108239C41008148 @default.
- W4285108239 hasConceptScore W4285108239C42475967 @default.
- W4285108239 hasConceptScore W4285108239C44104985 @default.
- W4285108239 hasConceptScore W4285108239C73555534 @default.
- W4285108239 hasConceptScore W4285108239C81917197 @default.
- W4285108239 hasLocation W42851082391 @default.
- W4285108239 hasLocation W42851082392 @default.
- W4285108239 hasOpenAccess W4285108239 @default.
- W4285108239 hasPrimaryLocation W42851082391 @default.
- W4285108239 hasRelatedWork W1509595664 @default.
- W4285108239 hasRelatedWork W2025420296 @default.
- W4285108239 hasRelatedWork W2026338177 @default.
- W4285108239 hasRelatedWork W2063722302 @default.
- W4285108239 hasRelatedWork W2368589249 @default.
- W4285108239 hasRelatedWork W2778747708 @default.
- W4285108239 hasRelatedWork W4220890114 @default.
- W4285108239 hasRelatedWork W4250185601 @default.
- W4285108239 hasRelatedWork W4288065718 @default.
- W4285108239 hasRelatedWork W2013357779 @default.
- W4285108239 hasVolume "107" @default.
- W4285108239 isParatext "false" @default.
- W4285108239 isRetracted "false" @default.
- W4285108239 workType "article" @default.