Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285108532> ?p ?o ?g. }
- W4285108532 endingPage "62109" @default.
- W4285108532 startingPage "62097" @default.
- W4285108532 abstract "The rapid development of different social media and content-sharing platforms has been largely exploited to spread misinformation and fake news that make people believing in harmful stories, which allow to influence public opinion, and could cause panic and chaos among population. Thus, fake news detection has become an important research topic, aiming at flagging a specific content as fake or legitimate. The fake news detection solutions can be divided into three main categories: content-based, social context-based, and knowledge-based approaches. In this paper, we propose a novel hybrid fake news detection system that combines linguistic and knowledge-based approaches and inherits their advantages, by employing two different sets of features: (1) linguistic features (i.e., title, number of words, reading ease, lexical diversity,and sentiment), and (2) a novel set of knowledge-based features, called <i>fact-verification</i> features that comprise three types of information namely, (i) <i>reputation of the website</i> where the news is published, (ii) <i>coverage</i>, i.e., number of sources that published the news, and (iii) <i>fact-check</i>, i.e., opinion of well-known fact-checking websites about the news, i.e., true or false. The proposed system only employs eight features, which is less than most of the state-of-the-art approaches. Also, the evaluation results on a fake news dataset show that the proposed system employing both types of features can reach an accuracy of 94.4%, which is better compared to that obtained from separately employing linguistic features (i.e., accuracy=89.4% ) and fact-verification features (i.e., accuracy=81.2%)." @default.
- W4285108532 created "2022-07-14" @default.
- W4285108532 creator A5001649429 @default.
- W4285108532 creator A5037069575 @default.
- W4285108532 creator A5038803789 @default.
- W4285108532 creator A5061366468 @default.
- W4285108532 creator A5081909889 @default.
- W4285108532 creator A5084235184 @default.
- W4285108532 date "2022-01-01" @default.
- W4285108532 modified "2023-10-18" @default.
- W4285108532 title "A Hybrid Linguistic and Knowledge-Based Analysis Approach for Fake News Detection on Social Media" @default.
- W4285108532 cites W1532503642 @default.
- W4285108532 cites W1598942639 @default.
- W4285108532 cites W1605688901 @default.
- W4285108532 cites W1606480292 @default.
- W4285108532 cites W1969944630 @default.
- W4285108532 cites W2014552602 @default.
- W4285108532 cites W2031507969 @default.
- W4285108532 cites W2063000354 @default.
- W4285108532 cites W2067996923 @default.
- W4285108532 cites W2084591134 @default.
- W4285108532 cites W2087189381 @default.
- W4285108532 cites W2127978399 @default.
- W4285108532 cites W2132210327 @default.
- W4285108532 cites W2248267741 @default.
- W4285108532 cites W2251214593 @default.
- W4285108532 cites W2252350410 @default.
- W4285108532 cites W2317666317 @default.
- W4285108532 cites W2340254858 @default.
- W4285108532 cites W2340511639 @default.
- W4285108532 cites W2340645138 @default.
- W4285108532 cites W2398287226 @default.
- W4285108532 cites W2410465342 @default.
- W4285108532 cites W2498091894 @default.
- W4285108532 cites W2563585333 @default.
- W4285108532 cites W2569999341 @default.
- W4285108532 cites W2742330194 @default.
- W4285108532 cites W2757749329 @default.
- W4285108532 cites W2759820691 @default.
- W4285108532 cites W2763699126 @default.
- W4285108532 cites W2767921688 @default.
- W4285108532 cites W2769470793 @default.
- W4285108532 cites W2769636162 @default.
- W4285108532 cites W2783564496 @default.
- W4285108532 cites W2788235048 @default.
- W4285108532 cites W2798314078 @default.
- W4285108532 cites W2890930935 @default.
- W4285108532 cites W2895553377 @default.
- W4285108532 cites W2903981179 @default.
- W4285108532 cites W2906971970 @default.
- W4285108532 cites W2911964244 @default.
- W4285108532 cites W2935206105 @default.
- W4285108532 cites W2963416784 @default.
- W4285108532 cites W2963430777 @default.
- W4285108532 cites W2964092925 @default.
- W4285108532 cites W2966455460 @default.
- W4285108532 cites W2991596147 @default.
- W4285108532 cites W3008194664 @default.
- W4285108532 cites W3021382697 @default.
- W4285108532 cites W3101890897 @default.
- W4285108532 cites W3103912187 @default.
- W4285108532 cites W3119467012 @default.
- W4285108532 cites W3127455518 @default.
- W4285108532 cites W3128412913 @default.
- W4285108532 cites W3158792679 @default.
- W4285108532 cites W3160229356 @default.
- W4285108532 cites W3169831627 @default.
- W4285108532 cites W3173180842 @default.
- W4285108532 cites W3186867771 @default.
- W4285108532 cites W3202006703 @default.
- W4285108532 cites W4210977106 @default.
- W4285108532 cites W4232331747 @default.
- W4285108532 cites W4288079542 @default.
- W4285108532 cites W651477617 @default.
- W4285108532 doi "https://doi.org/10.1109/access.2022.3181184" @default.
- W4285108532 hasPublicationYear "2022" @default.
- W4285108532 type Work @default.
- W4285108532 citedByCount "22" @default.
- W4285108532 countsByYear W42851085322022 @default.
- W4285108532 countsByYear W42851085322023 @default.
- W4285108532 crossrefType "journal-article" @default.
- W4285108532 hasAuthorship W4285108532A5001649429 @default.
- W4285108532 hasAuthorship W4285108532A5037069575 @default.
- W4285108532 hasAuthorship W4285108532A5038803789 @default.
- W4285108532 hasAuthorship W4285108532A5061366468 @default.
- W4285108532 hasAuthorship W4285108532A5081909889 @default.
- W4285108532 hasAuthorship W4285108532A5084235184 @default.
- W4285108532 hasBestOaLocation W42851085321 @default.
- W4285108532 hasConcept C108827166 @default.
- W4285108532 hasConcept C136764020 @default.
- W4285108532 hasConcept C138885662 @default.
- W4285108532 hasConcept C144024400 @default.
- W4285108532 hasConcept C151730666 @default.
- W4285108532 hasConcept C154945302 @default.
- W4285108532 hasConcept C166957645 @default.
- W4285108532 hasConcept C177264268 @default.
- W4285108532 hasConcept C199360897 @default.
- W4285108532 hasConcept C204321447 @default.