Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285109711> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4285109711 endingPage "669" @default.
- W4285109711 startingPage "659" @default.
- W4285109711 abstract "In recent years, the development of deep learning models that can generate more accurate predictions and operate in real-time has brought both opportunities and challenges across the various domains of robotic vision. This breakthrough enables researchers to design and deploy more challenging tasks on intelligent mobile robots, which require emphasized abilities of learning and reasoning. In this paper, a new method for intelligent robot control, based on deep learning and reinforcement learning is proposed. The fundamental idea of this work is how the UAV equipped with a monocular camera can learn significant information about the object of interest in the context of its localization and navigation. For such purpose, the object detection system based on Tiny YOLOv2 architecture is employed. Furthermore, bounding box data generated by a convolution neural network is utilized for depth estimation and determining object boundaries. This information has shown how the state-space dimensions can be significantly reduced, which was essential for further implementation of the Q-learning algorithm. In order to test the proposed framework, a model is developed in MATLAB Simulink. The simulation, which covered different scenarios, was carried out on the UAV within the 3D scene rendered by Unreal Engine. The obtained results have demonstrated the applicability of the proposed methodology for depth estimation, gathering information about the object, object-driven navigation, and autonomous localization and navigation." @default.
- W4285109711 created "2022-07-14" @default.
- W4285109711 creator A5002325220 @default.
- W4285109711 creator A5038308903 @default.
- W4285109711 date "2022-01-01" @default.
- W4285109711 modified "2023-09-23" @default.
- W4285109711 title "Object Detection and Reinforcement Learning Approach for Intelligent Control of UAV" @default.
- W4285109711 cites W2570343428 @default.
- W4285109711 cites W2794268423 @default.
- W4285109711 cites W2947616598 @default.
- W4285109711 cites W2964248288 @default.
- W4285109711 cites W3034958977 @default.
- W4285109711 cites W3163692108 @default.
- W4285109711 cites W4214717370 @default.
- W4285109711 doi "https://doi.org/10.1007/978-3-031-05230-9_79" @default.
- W4285109711 hasPublicationYear "2022" @default.
- W4285109711 type Work @default.
- W4285109711 citedByCount "1" @default.
- W4285109711 countsByYear W42851097112023 @default.
- W4285109711 crossrefType "book-chapter" @default.
- W4285109711 hasAuthorship W4285109711A5002325220 @default.
- W4285109711 hasAuthorship W4285109711A5038308903 @default.
- W4285109711 hasConcept C115961682 @default.
- W4285109711 hasConcept C147037132 @default.
- W4285109711 hasConcept C151730666 @default.
- W4285109711 hasConcept C153180895 @default.
- W4285109711 hasConcept C154945302 @default.
- W4285109711 hasConcept C19966478 @default.
- W4285109711 hasConcept C2776151529 @default.
- W4285109711 hasConcept C2779343474 @default.
- W4285109711 hasConcept C2781238097 @default.
- W4285109711 hasConcept C31972630 @default.
- W4285109711 hasConcept C41008148 @default.
- W4285109711 hasConcept C50644808 @default.
- W4285109711 hasConcept C81363708 @default.
- W4285109711 hasConcept C86803240 @default.
- W4285109711 hasConcept C90509273 @default.
- W4285109711 hasConcept C97541855 @default.
- W4285109711 hasConceptScore W4285109711C115961682 @default.
- W4285109711 hasConceptScore W4285109711C147037132 @default.
- W4285109711 hasConceptScore W4285109711C151730666 @default.
- W4285109711 hasConceptScore W4285109711C153180895 @default.
- W4285109711 hasConceptScore W4285109711C154945302 @default.
- W4285109711 hasConceptScore W4285109711C19966478 @default.
- W4285109711 hasConceptScore W4285109711C2776151529 @default.
- W4285109711 hasConceptScore W4285109711C2779343474 @default.
- W4285109711 hasConceptScore W4285109711C2781238097 @default.
- W4285109711 hasConceptScore W4285109711C31972630 @default.
- W4285109711 hasConceptScore W4285109711C41008148 @default.
- W4285109711 hasConceptScore W4285109711C50644808 @default.
- W4285109711 hasConceptScore W4285109711C81363708 @default.
- W4285109711 hasConceptScore W4285109711C86803240 @default.
- W4285109711 hasConceptScore W4285109711C90509273 @default.
- W4285109711 hasConceptScore W4285109711C97541855 @default.
- W4285109711 hasLocation W42851097111 @default.
- W4285109711 hasOpenAccess W4285109711 @default.
- W4285109711 hasPrimaryLocation W42851097111 @default.
- W4285109711 hasRelatedWork W1988485990 @default.
- W4285109711 hasRelatedWork W2007544051 @default.
- W4285109711 hasRelatedWork W2095705906 @default.
- W4285109711 hasRelatedWork W2732308154 @default.
- W4285109711 hasRelatedWork W2766547489 @default.
- W4285109711 hasRelatedWork W2801801420 @default.
- W4285109711 hasRelatedWork W2965672371 @default.
- W4285109711 hasRelatedWork W2975200075 @default.
- W4285109711 hasRelatedWork W3177406559 @default.
- W4285109711 hasRelatedWork W3211653591 @default.
- W4285109711 isParatext "false" @default.
- W4285109711 isRetracted "false" @default.
- W4285109711 workType "book-chapter" @default.