Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285113857> ?p ?o ?g. }
- W4285113857 endingPage "20475" @default.
- W4285113857 startingPage "20464" @default.
- W4285113857 abstract "Accurate location data of ground vehicles is very important for various intelligent transportation applications. As one of the most commonly-used navigation solutions at present, the GNSS/INS integrated navigation still cannot meet the accuracy and stability command of current applications. This paper presents a National Marine Electronics Association (NMEA) protocol data-assisted high-accuracy navigation algorithm based on GNSS position error estimation using multi-task learning (MT-e&R), which can accurately estimate the GNSS position error and GNSS measurement noise covariance matrix with the assistance of protocol data and a multi-task learning model. Extensive experimental results on practical navigation data collected in various urban environments of Beijing demonstrate that our proposed approach can improve the performance of integrated navigation system. The positioning errors of integrated navigation equipped with single-frequency receiver are reduced by 36.17% and 39.58% for double-frequency receiver, which confirms the reasonable environmental adaptability of our proposed MT-e&R algorithm." @default.
- W4285113857 created "2022-07-14" @default.
- W4285113857 creator A5006658950 @default.
- W4285113857 creator A5008135430 @default.
- W4285113857 creator A5046332439 @default.
- W4285113857 creator A5052635380 @default.
- W4285113857 creator A5053132020 @default.
- W4285113857 creator A5076232787 @default.
- W4285113857 date "2022-11-01" @default.
- W4285113857 modified "2023-10-14" @default.
- W4285113857 title "MT-e&R: NMEA Protocol-Assisted High-Accuracy Navigation Algorithm Based on GNSS Error Estimation Using Multitask Learning" @default.
- W4285113857 cites W1564750388 @default.
- W4285113857 cites W1978255623 @default.
- W4285113857 cites W1985643633 @default.
- W4285113857 cites W1986497887 @default.
- W4285113857 cites W1998282176 @default.
- W4285113857 cites W2100250268 @default.
- W4285113857 cites W2108710146 @default.
- W4285113857 cites W2112358954 @default.
- W4285113857 cites W2123705801 @default.
- W4285113857 cites W2141154078 @default.
- W4285113857 cites W2147768505 @default.
- W4285113857 cites W2152930134 @default.
- W4285113857 cites W2160626949 @default.
- W4285113857 cites W2170390609 @default.
- W4285113857 cites W2284520540 @default.
- W4285113857 cites W2323473861 @default.
- W4285113857 cites W2330843973 @default.
- W4285113857 cites W2343889204 @default.
- W4285113857 cites W2344992754 @default.
- W4285113857 cites W2347942784 @default.
- W4285113857 cites W2501073294 @default.
- W4285113857 cites W2603493297 @default.
- W4285113857 cites W2619995677 @default.
- W4285113857 cites W2768501204 @default.
- W4285113857 cites W2793225041 @default.
- W4285113857 cites W2800730691 @default.
- W4285113857 cites W2806885023 @default.
- W4285113857 cites W2844111606 @default.
- W4285113857 cites W2894544906 @default.
- W4285113857 cites W2897369919 @default.
- W4285113857 cites W2905020037 @default.
- W4285113857 cites W2911452331 @default.
- W4285113857 cites W2944897237 @default.
- W4285113857 cites W2945856812 @default.
- W4285113857 cites W2952944604 @default.
- W4285113857 cites W2965313220 @default.
- W4285113857 cites W2977982730 @default.
- W4285113857 cites W2980901239 @default.
- W4285113857 cites W2998114618 @default.
- W4285113857 cites W2999063329 @default.
- W4285113857 cites W3004636822 @default.
- W4285113857 cites W3023869973 @default.
- W4285113857 doi "https://doi.org/10.1109/tits.2022.3179237" @default.
- W4285113857 hasPublicationYear "2022" @default.
- W4285113857 type Work @default.
- W4285113857 citedByCount "0" @default.
- W4285113857 crossrefType "journal-article" @default.
- W4285113857 hasAuthorship W4285113857A5006658950 @default.
- W4285113857 hasAuthorship W4285113857A5008135430 @default.
- W4285113857 hasAuthorship W4285113857A5046332439 @default.
- W4285113857 hasAuthorship W4285113857A5052635380 @default.
- W4285113857 hasAuthorship W4285113857A5053132020 @default.
- W4285113857 hasAuthorship W4285113857A5076232787 @default.
- W4285113857 hasConcept C112972136 @default.
- W4285113857 hasConcept C11413529 @default.
- W4285113857 hasConcept C119857082 @default.
- W4285113857 hasConcept C14279187 @default.
- W4285113857 hasConcept C2777891301 @default.
- W4285113857 hasConcept C41008148 @default.
- W4285113857 hasConcept C60229501 @default.
- W4285113857 hasConcept C76155785 @default.
- W4285113857 hasConcept C79403827 @default.
- W4285113857 hasConceptScore W4285113857C112972136 @default.
- W4285113857 hasConceptScore W4285113857C11413529 @default.
- W4285113857 hasConceptScore W4285113857C119857082 @default.
- W4285113857 hasConceptScore W4285113857C14279187 @default.
- W4285113857 hasConceptScore W4285113857C2777891301 @default.
- W4285113857 hasConceptScore W4285113857C41008148 @default.
- W4285113857 hasConceptScore W4285113857C60229501 @default.
- W4285113857 hasConceptScore W4285113857C76155785 @default.
- W4285113857 hasConceptScore W4285113857C79403827 @default.
- W4285113857 hasFunder F4320321001 @default.
- W4285113857 hasFunder F4320322919 @default.
- W4285113857 hasFunder F4320335561 @default.
- W4285113857 hasFunder F4320335777 @default.
- W4285113857 hasIssue "11" @default.
- W4285113857 hasLocation W42851138571 @default.
- W4285113857 hasOpenAccess W4285113857 @default.
- W4285113857 hasPrimaryLocation W42851138571 @default.
- W4285113857 hasRelatedWork W1551213729 @default.
- W4285113857 hasRelatedWork W1620388265 @default.
- W4285113857 hasRelatedWork W2026970171 @default.
- W4285113857 hasRelatedWork W2209079822 @default.
- W4285113857 hasRelatedWork W2391261024 @default.
- W4285113857 hasRelatedWork W297215395 @default.
- W4285113857 hasRelatedWork W3005924041 @default.
- W4285113857 hasRelatedWork W3015461008 @default.