Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285115263> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4285115263 endingPage "13243" @default.
- W4285115263 startingPage "13234" @default.
- W4285115263 abstract "Around one-third of the U.S. rail network is owned and operated by shortlines (Class II and III railroads). The infrastructure conditions of these railroads are marginal, and their revenue and number of employees are insufficient. To conduct proper and timely infrastructure management, it is critical for shortlines to establish a reliable and cost-effective inventory of their existing rail tracks. Significant efforts have been made to develop and employ automatic rail extraction methods as it is a critical step to establishing a rail infrastructure inventory. However, existing methods rely heavily on high-density point cloud datasets with known sensor properties and configurations or sophisticated imaging sensors. These requirements prevent their deployments in shortlines because point cloud data available to shortlines are often in low-density and with unknown specifications constrained by their financial situations. To address those limitations, we propose an automatic, configuration-independent coarse-to-fine extraction method for low-density LiDAR data. The proposed extraction framework is only developed based on high-level geometric features of the rail that can even be captured by low-density point cloud data with unknown sensor properties and configurations. The proposed method is evaluated on the existing grade-crossing dataset collected by the Federal Railroad Administration for grade-crossing safety evaluation with a point cloud density of only 293 points/ <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text{m}^{{2}}$ </tex-math></inline-formula> . The overall performance shows average completeness of 96.97%, correctness of 99.71%, and quality of 96.67% for all extraction scenarios. The promising results provide shortlines a capability to extract rails for any geometry measurements based on any low-density LiDAR data available to them." @default.
- W4285115263 created "2022-07-14" @default.
- W4285115263 creator A5008156638 @default.
- W4285115263 creator A5008489158 @default.
- W4285115263 creator A5027835843 @default.
- W4285115263 creator A5039597335 @default.
- W4285115263 creator A5080102032 @default.
- W4285115263 date "2022-07-01" @default.
- W4285115263 modified "2023-10-12" @default.
- W4285115263 title "An Automated Rail Extraction Framework for Low-Density LiDAR Data Without Sensor Configuration Information" @default.
- W4285115263 cites W1974074792 @default.
- W4285115263 cites W2041330605 @default.
- W4285115263 cites W2041576219 @default.
- W4285115263 cites W2065707246 @default.
- W4285115263 cites W2117330144 @default.
- W4285115263 cites W2128726153 @default.
- W4285115263 cites W2145395493 @default.
- W4285115263 cites W2170424831 @default.
- W4285115263 cites W2296719434 @default.
- W4285115263 cites W2554050866 @default.
- W4285115263 cites W2565995826 @default.
- W4285115263 cites W2767936744 @default.
- W4285115263 cites W2904757855 @default.
- W4285115263 cites W2913972737 @default.
- W4285115263 cites W2966198222 @default.
- W4285115263 cites W3092941304 @default.
- W4285115263 cites W3110376229 @default.
- W4285115263 cites W3185385394 @default.
- W4285115263 cites W4300672471 @default.
- W4285115263 doi "https://doi.org/10.1109/jsen.2022.3177698" @default.
- W4285115263 hasPublicationYear "2022" @default.
- W4285115263 type Work @default.
- W4285115263 citedByCount "1" @default.
- W4285115263 countsByYear W42851152632023 @default.
- W4285115263 crossrefType "journal-article" @default.
- W4285115263 hasAuthorship W4285115263A5008156638 @default.
- W4285115263 hasAuthorship W4285115263A5008489158 @default.
- W4285115263 hasAuthorship W4285115263A5027835843 @default.
- W4285115263 hasAuthorship W4285115263A5039597335 @default.
- W4285115263 hasAuthorship W4285115263A5080102032 @default.
- W4285115263 hasConcept C111919701 @default.
- W4285115263 hasConcept C121955636 @default.
- W4285115263 hasConcept C124101348 @default.
- W4285115263 hasConcept C131979681 @default.
- W4285115263 hasConcept C134306372 @default.
- W4285115263 hasConcept C144133560 @default.
- W4285115263 hasConcept C154945302 @default.
- W4285115263 hasConcept C17231256 @default.
- W4285115263 hasConcept C195487862 @default.
- W4285115263 hasConcept C205649164 @default.
- W4285115263 hasConcept C2524010 @default.
- W4285115263 hasConcept C28719098 @default.
- W4285115263 hasConcept C33923547 @default.
- W4285115263 hasConcept C41008148 @default.
- W4285115263 hasConcept C51399673 @default.
- W4285115263 hasConcept C62649853 @default.
- W4285115263 hasConcept C79974875 @default.
- W4285115263 hasConceptScore W4285115263C111919701 @default.
- W4285115263 hasConceptScore W4285115263C121955636 @default.
- W4285115263 hasConceptScore W4285115263C124101348 @default.
- W4285115263 hasConceptScore W4285115263C131979681 @default.
- W4285115263 hasConceptScore W4285115263C134306372 @default.
- W4285115263 hasConceptScore W4285115263C144133560 @default.
- W4285115263 hasConceptScore W4285115263C154945302 @default.
- W4285115263 hasConceptScore W4285115263C17231256 @default.
- W4285115263 hasConceptScore W4285115263C195487862 @default.
- W4285115263 hasConceptScore W4285115263C205649164 @default.
- W4285115263 hasConceptScore W4285115263C2524010 @default.
- W4285115263 hasConceptScore W4285115263C28719098 @default.
- W4285115263 hasConceptScore W4285115263C33923547 @default.
- W4285115263 hasConceptScore W4285115263C41008148 @default.
- W4285115263 hasConceptScore W4285115263C51399673 @default.
- W4285115263 hasConceptScore W4285115263C62649853 @default.
- W4285115263 hasConceptScore W4285115263C79974875 @default.
- W4285115263 hasFunder F4320309013 @default.
- W4285115263 hasIssue "13" @default.
- W4285115263 hasLocation W42851152631 @default.
- W4285115263 hasOpenAccess W4285115263 @default.
- W4285115263 hasPrimaryLocation W42851152631 @default.
- W4285115263 hasRelatedWork W2739701376 @default.
- W4285115263 hasRelatedWork W2893783680 @default.
- W4285115263 hasRelatedWork W2900572343 @default.
- W4285115263 hasRelatedWork W3009777820 @default.
- W4285115263 hasRelatedWork W3115026157 @default.
- W4285115263 hasRelatedWork W4281893039 @default.
- W4285115263 hasRelatedWork W4282933852 @default.
- W4285115263 hasRelatedWork W4293094720 @default.
- W4285115263 hasRelatedWork W4318830344 @default.
- W4285115263 hasRelatedWork W3142790464 @default.
- W4285115263 hasVolume "22" @default.
- W4285115263 isParatext "false" @default.
- W4285115263 isRetracted "false" @default.
- W4285115263 workType "article" @default.