Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285116934> ?p ?o ?g. }
- W4285116934 endingPage "3250" @default.
- W4285116934 startingPage "3235" @default.
- W4285116934 abstract "Environmental sustainability is the rate of renewable resource harvesting, pollution control, and non-renewable resource exhaustion. Air pollution is a significant issue confronted by the environment particularly by highly populated countries like India. Due to increased population, the number of vehicles also continues to increase. Each vehicle has its individual emission rate; however, the issue arises when the emission rate crosses the standard value and the quality of the air gets degraded. Owing to the technological advances in machine learning (ML), it is possible to develop prediction approaches to monitor and control pollution using real time data. With the development of the Internet of Things (IoT) and Big Data Analytics (BDA), there is a huge paradigm shift in how environmental data are employed for sustainable cities and societies, especially by applying intelligent algorithms. In this view, this study develops an optimal AI based air quality prediction and classification (OAI-AQPC) model in big data environment. For handling big data from environmental monitoring, Hadoop MapReduce tool is employed. In addition, a predictive model is built using the hybridization of ARIMA and neural network (NN) called ARIMA-NN to predict the pollution level. For improving the performance of the ARIMA-NN algorithm, the parameter tuning process takes place using oppositional swallow swarm optimization (OSSO) algorithm. Finally, Adaptive neuro-fuzzy inference system (ANFIS) classifier is used to classify the air quality into pollutant and non-pollutant. A detailed experimental analysis is performed for highlighting the better prediction performance of the proposed ARIMA-NN method. The obtained outcomes pointed out the enhanced outcomes of the proposed OAI-AQPC technique over the recent state of art techniques." @default.
- W4285116934 created "2022-07-14" @default.
- W4285116934 creator A5021639521 @default.
- W4285116934 creator A5036775751 @default.
- W4285116934 creator A5054828989 @default.
- W4285116934 creator A5065453934 @default.
- W4285116934 creator A5068423119 @default.
- W4285116934 creator A5070375172 @default.
- W4285116934 creator A5072745905 @default.
- W4285116934 creator A5088585708 @default.
- W4285116934 date "2022-01-01" @default.
- W4285116934 modified "2023-09-25" @default.
- W4285116934 title "Big Data Analytics with Artificial Intelligence Enabled Environmental Air Pollution Monitoring Framework" @default.
- W4285116934 cites W157797090 @default.
- W4285116934 cites W1977139035 @default.
- W4285116934 cites W2007005198 @default.
- W4285116934 cites W2070986256 @default.
- W4285116934 cites W2172833944 @default.
- W4285116934 cites W2764005395 @default.
- W4285116934 cites W2766040222 @default.
- W4285116934 cites W2802587164 @default.
- W4285116934 cites W2810604373 @default.
- W4285116934 cites W2861330150 @default.
- W4285116934 cites W2905241670 @default.
- W4285116934 cites W2905367474 @default.
- W4285116934 cites W2913211573 @default.
- W4285116934 cites W2991648381 @default.
- W4285116934 cites W3005795666 @default.
- W4285116934 cites W3046217671 @default.
- W4285116934 cites W3113234779 @default.
- W4285116934 cites W3117573952 @default.
- W4285116934 cites W3174135814 @default.
- W4285116934 cites W4206056942 @default.
- W4285116934 doi "https://doi.org/10.32604/cmc.2022.029604" @default.
- W4285116934 hasPublicationYear "2022" @default.
- W4285116934 type Work @default.
- W4285116934 citedByCount "0" @default.
- W4285116934 crossrefType "journal-article" @default.
- W4285116934 hasAuthorship W4285116934A5021639521 @default.
- W4285116934 hasAuthorship W4285116934A5036775751 @default.
- W4285116934 hasAuthorship W4285116934A5054828989 @default.
- W4285116934 hasAuthorship W4285116934A5065453934 @default.
- W4285116934 hasAuthorship W4285116934A5068423119 @default.
- W4285116934 hasAuthorship W4285116934A5070375172 @default.
- W4285116934 hasAuthorship W4285116934A5072745905 @default.
- W4285116934 hasAuthorship W4285116934A5088585708 @default.
- W4285116934 hasBestOaLocation W42851169341 @default.
- W4285116934 hasConcept C119857082 @default.
- W4285116934 hasConcept C124101348 @default.
- W4285116934 hasConcept C126314574 @default.
- W4285116934 hasConcept C151406439 @default.
- W4285116934 hasConcept C153294291 @default.
- W4285116934 hasConcept C154945302 @default.
- W4285116934 hasConcept C186108316 @default.
- W4285116934 hasConcept C195975749 @default.
- W4285116934 hasConcept C205649164 @default.
- W4285116934 hasConcept C24338571 @default.
- W4285116934 hasConcept C2909468537 @default.
- W4285116934 hasConcept C39432304 @default.
- W4285116934 hasConcept C41008148 @default.
- W4285116934 hasConcept C50644808 @default.
- W4285116934 hasConcept C526734887 @default.
- W4285116934 hasConcept C58166 @default.
- W4285116934 hasConcept C75684735 @default.
- W4285116934 hasConcept C79158427 @default.
- W4285116934 hasConcept C85617194 @default.
- W4285116934 hasConceptScore W4285116934C119857082 @default.
- W4285116934 hasConceptScore W4285116934C124101348 @default.
- W4285116934 hasConceptScore W4285116934C126314574 @default.
- W4285116934 hasConceptScore W4285116934C151406439 @default.
- W4285116934 hasConceptScore W4285116934C153294291 @default.
- W4285116934 hasConceptScore W4285116934C154945302 @default.
- W4285116934 hasConceptScore W4285116934C186108316 @default.
- W4285116934 hasConceptScore W4285116934C195975749 @default.
- W4285116934 hasConceptScore W4285116934C205649164 @default.
- W4285116934 hasConceptScore W4285116934C24338571 @default.
- W4285116934 hasConceptScore W4285116934C2909468537 @default.
- W4285116934 hasConceptScore W4285116934C39432304 @default.
- W4285116934 hasConceptScore W4285116934C41008148 @default.
- W4285116934 hasConceptScore W4285116934C50644808 @default.
- W4285116934 hasConceptScore W4285116934C526734887 @default.
- W4285116934 hasConceptScore W4285116934C58166 @default.
- W4285116934 hasConceptScore W4285116934C75684735 @default.
- W4285116934 hasConceptScore W4285116934C79158427 @default.
- W4285116934 hasConceptScore W4285116934C85617194 @default.
- W4285116934 hasIssue "2" @default.
- W4285116934 hasLocation W42851169341 @default.
- W4285116934 hasOpenAccess W4285116934 @default.
- W4285116934 hasPrimaryLocation W42851169341 @default.
- W4285116934 hasRelatedWork W1771535374 @default.
- W4285116934 hasRelatedWork W2012572451 @default.
- W4285116934 hasRelatedWork W2117014758 @default.
- W4285116934 hasRelatedWork W2547332917 @default.
- W4285116934 hasRelatedWork W2569938497 @default.
- W4285116934 hasRelatedWork W2889626453 @default.
- W4285116934 hasRelatedWork W2961085424 @default.
- W4285116934 hasRelatedWork W3003060543 @default.
- W4285116934 hasRelatedWork W3014300295 @default.