Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285121103> ?p ?o ?g. }
- W4285121103 endingPage "708" @default.
- W4285121103 startingPage "696" @default.
- W4285121103 abstract "Due to the difference of data modalities, it’s a very challenging task to find the feature correspondences between 2D and 3D data in LiDAR-Camera calibration. In existing works, the establishment of the cross-model correspondence is always simplified by specifically designing artificial targets or restricting the region of searching correspondences with the help of initial extrinsic parameters. To achieve automatic LiDAR-Camera calibration without prior knowledge, we propose a novel self-adaptive LiDAR-Camera calibration approach named <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ATOP</b> which realizes a cascaded procedure of ATtention-to-OPtimization. In the attention stage, an attention-based object-level matching network called Cross-Modal Matching Network (CMON) is designed for finding the overlapped FOV(Field of View) between camera and LiDAR, and producing 2D-3D object-level correspondences. In the optimization stage, two cascaded PSO-based (Particle Swarm Optimization) algorithms, namely <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Point</i> -PSO and <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Pose</i> -PSO, are designed to estimate the LiDAR-Camera extrinsic parameters. Different from previous works, the proposed calibration method does not require any artificial targets or initial pose guesses, therefore it can be applied to achieve online self-adaptive LiDAR-Camera calibration. Besides, this is the first work, to our best knowledge, to achieve object-level matching between uncalibrated camera and LiDAR data. Experimental results on both the collected datasets and KITTI datasets demonstrate the effectiveness of the proposed method." @default.
- W4285121103 created "2022-07-14" @default.
- W4285121103 creator A5005341472 @default.
- W4285121103 creator A5006702360 @default.
- W4285121103 creator A5044447816 @default.
- W4285121103 creator A5053112608 @default.
- W4285121103 creator A5054830929 @default.
- W4285121103 creator A5072155711 @default.
- W4285121103 date "2023-01-01" @default.
- W4285121103 modified "2023-10-17" @default.
- W4285121103 title "ATOP: An Attention-to-Optimization Approach for Automatic LiDAR-Camera Calibration via Cross-Modal Object Matching" @default.
- W4285121103 cites W1829255258 @default.
- W4285121103 cites W1990398405 @default.
- W4285121103 cites W1991544872 @default.
- W4285121103 cites W1999343901 @default.
- W4285121103 cites W2111365302 @default.
- W4285121103 cites W2150066425 @default.
- W4285121103 cites W2217105717 @default.
- W4285121103 cites W2762439315 @default.
- W4285121103 cites W2891529090 @default.
- W4285121103 cites W2905274083 @default.
- W4285121103 cites W2908599206 @default.
- W4285121103 cites W2909816247 @default.
- W4285121103 cites W2914232966 @default.
- W4285121103 cites W2967926749 @default.
- W4285121103 cites W2968040091 @default.
- W4285121103 cites W2968296999 @default.
- W4285121103 cites W2969446427 @default.
- W4285121103 cites W2970938561 @default.
- W4285121103 cites W2980040548 @default.
- W4285121103 cites W2990464486 @default.
- W4285121103 cites W2994997884 @default.
- W4285121103 cites W3000171824 @default.
- W4285121103 cites W3003437478 @default.
- W4285121103 cites W3021571323 @default.
- W4285121103 cites W3090763579 @default.
- W4285121103 cites W3091523271 @default.
- W4285121103 cites W3101092662 @default.
- W4285121103 cites W3143504974 @default.
- W4285121103 cites W3153564771 @default.
- W4285121103 cites W3170994844 @default.
- W4285121103 cites W3171843835 @default.
- W4285121103 cites W3172560577 @default.
- W4285121103 cites W3175380624 @default.
- W4285121103 cites W3183685035 @default.
- W4285121103 cites W3194783840 @default.
- W4285121103 cites W3205078851 @default.
- W4285121103 cites W3209752914 @default.
- W4285121103 cites W4200134404 @default.
- W4285121103 cites W4210553154 @default.
- W4285121103 doi "https://doi.org/10.1109/tiv.2022.3184976" @default.
- W4285121103 hasPublicationYear "2023" @default.
- W4285121103 type Work @default.
- W4285121103 citedByCount "3" @default.
- W4285121103 countsByYear W42851211032023 @default.
- W4285121103 crossrefType "journal-article" @default.
- W4285121103 hasAuthorship W4285121103A5005341472 @default.
- W4285121103 hasAuthorship W4285121103A5006702360 @default.
- W4285121103 hasAuthorship W4285121103A5044447816 @default.
- W4285121103 hasAuthorship W4285121103A5053112608 @default.
- W4285121103 hasAuthorship W4285121103A5054830929 @default.
- W4285121103 hasAuthorship W4285121103A5072155711 @default.
- W4285121103 hasConcept C105795698 @default.
- W4285121103 hasConcept C110898773 @default.
- W4285121103 hasConcept C11413529 @default.
- W4285121103 hasConcept C154945302 @default.
- W4285121103 hasConcept C165064840 @default.
- W4285121103 hasConcept C165838908 @default.
- W4285121103 hasConcept C200336642 @default.
- W4285121103 hasConcept C202444582 @default.
- W4285121103 hasConcept C205649164 @default.
- W4285121103 hasConcept C2524010 @default.
- W4285121103 hasConcept C2781238097 @default.
- W4285121103 hasConcept C28719098 @default.
- W4285121103 hasConcept C31972630 @default.
- W4285121103 hasConcept C33923547 @default.
- W4285121103 hasConcept C41008148 @default.
- W4285121103 hasConcept C51399673 @default.
- W4285121103 hasConcept C62649853 @default.
- W4285121103 hasConcept C85617194 @default.
- W4285121103 hasConcept C9652623 @default.
- W4285121103 hasConceptScore W4285121103C105795698 @default.
- W4285121103 hasConceptScore W4285121103C110898773 @default.
- W4285121103 hasConceptScore W4285121103C11413529 @default.
- W4285121103 hasConceptScore W4285121103C154945302 @default.
- W4285121103 hasConceptScore W4285121103C165064840 @default.
- W4285121103 hasConceptScore W4285121103C165838908 @default.
- W4285121103 hasConceptScore W4285121103C200336642 @default.
- W4285121103 hasConceptScore W4285121103C202444582 @default.
- W4285121103 hasConceptScore W4285121103C205649164 @default.
- W4285121103 hasConceptScore W4285121103C2524010 @default.
- W4285121103 hasConceptScore W4285121103C2781238097 @default.
- W4285121103 hasConceptScore W4285121103C28719098 @default.
- W4285121103 hasConceptScore W4285121103C31972630 @default.
- W4285121103 hasConceptScore W4285121103C33923547 @default.
- W4285121103 hasConceptScore W4285121103C41008148 @default.
- W4285121103 hasConceptScore W4285121103C51399673 @default.
- W4285121103 hasConceptScore W4285121103C62649853 @default.