Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285121323> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4285121323 abstract "“Common ground” is the knowledge, facts, beliefs, etc. that are shared between participants in some joint activity. Much of human conversation concerns “grounding,” or ensuring that some assertion is actually shared between participants. Even for highly trained tasks, such teammates executing a military mission, each participant devotes attention to contributing new assertions, making adjustments based on the statements of others, offering potential repairs to resolve potential discrepancies in the common ground and so forth.In conversational interactions between humans and machines (or “agents”), this activity to build and to maintain a common ground is typically one-sided and fixed. It is one-sided because the human must do almost all the work of creating substantive common ground in the interaction. It is fixed because the agent does not adapt its understanding to what the human knows, prefers, and expects. Instead, the human must adapt to the agent. These limitations create burdensome cognitive demand, result in frustration and distrust in automation, and make the notion of an agent “teammate” seem an ambition far from reachable in today’s state-of-art. We are seeking to enable agents to more fully partner in building and maintaining common ground as well as to enable them to adapt their understanding of a joint activity. While “common ground” is often called out as a gap in human-machine teaming, there is not an extant, detailed analysis of the components of common ground and a mapping of these components to specific classes of functions (what specific agent capabilities is required to achieve common ground?) and deficits (what kinds of errors may arise when the functions are insufficient for a particular component of the common ground?). In this paper, we provide such an analysis, focusing on the requirements for human-machine teaming in a military context where interactions are task-oriented and generally well-trained.Drawing on the literature of human communication, we identify the components of information included in common ground. We identify three main axes: the temporal dimension of common ground and personal and communal common ground. The analysis further subdivides these distinctions, differentiating between aspects of the common ground such as personal history between participants, norms and expectations based on those norms, and the extent to which actions taken by participants in a human-machine interaction context are “public” events or not. Within each dimension, we also provide examples of specific issues that may arise due to problems due to lack of common ground related to a specific dimension. The analysis thus defines, at a more granular level than existing analyses, how specific categories of deficits in shared knowledge or processing differences manifests in misalignment in shared understanding. The paper both identifies specific challenges and prioritizes them according to acuteness of need. In other words, not all of the gaps require immediate attention to improve human-machine interaction. Further, the solution to specific issues may sometimes depend on solutions to other issues. As a consequence, this analysis facilitates greater understanding of how to attack issues in misalignment in both the nearer- and longer-terms." @default.
- W4285121323 created "2022-07-14" @default.
- W4285121323 creator A5011322251 @default.
- W4285121323 creator A5048872210 @default.
- W4285121323 creator A5056640034 @default.
- W4285121323 date "2022-01-01" @default.
- W4285121323 modified "2023-09-23" @default.
- W4285121323 title "Improving Common Ground in Human-Machine Teaming: Dimensions, Gaps, and Priorities" @default.
- W4285121323 doi "https://doi.org/10.54941/ahfe1001463" @default.
- W4285121323 hasPublicationYear "2022" @default.
- W4285121323 type Work @default.
- W4285121323 citedByCount "0" @default.
- W4285121323 crossrefType "proceedings-article" @default.
- W4285121323 hasAuthorship W4285121323A5011322251 @default.
- W4285121323 hasAuthorship W4285121323A5048872210 @default.
- W4285121323 hasAuthorship W4285121323A5056640034 @default.
- W4285121323 hasConcept C102993220 @default.
- W4285121323 hasConcept C107247716 @default.
- W4285121323 hasConcept C107457646 @default.
- W4285121323 hasConcept C127413603 @default.
- W4285121323 hasConcept C146047270 @default.
- W4285121323 hasConcept C154945302 @default.
- W4285121323 hasConcept C15744967 @default.
- W4285121323 hasConcept C18762648 @default.
- W4285121323 hasConcept C199360897 @default.
- W4285121323 hasConcept C201995342 @default.
- W4285121323 hasConcept C203659156 @default.
- W4285121323 hasConcept C2777200299 @default.
- W4285121323 hasConcept C2777877512 @default.
- W4285121323 hasConcept C2778321746 @default.
- W4285121323 hasConcept C2780451532 @default.
- W4285121323 hasConcept C31084985 @default.
- W4285121323 hasConcept C40422974 @default.
- W4285121323 hasConcept C41008148 @default.
- W4285121323 hasConcept C46312422 @default.
- W4285121323 hasConcept C542102704 @default.
- W4285121323 hasConcept C77805123 @default.
- W4285121323 hasConcept C78519656 @default.
- W4285121323 hasConceptScore W4285121323C102993220 @default.
- W4285121323 hasConceptScore W4285121323C107247716 @default.
- W4285121323 hasConceptScore W4285121323C107457646 @default.
- W4285121323 hasConceptScore W4285121323C127413603 @default.
- W4285121323 hasConceptScore W4285121323C146047270 @default.
- W4285121323 hasConceptScore W4285121323C154945302 @default.
- W4285121323 hasConceptScore W4285121323C15744967 @default.
- W4285121323 hasConceptScore W4285121323C18762648 @default.
- W4285121323 hasConceptScore W4285121323C199360897 @default.
- W4285121323 hasConceptScore W4285121323C201995342 @default.
- W4285121323 hasConceptScore W4285121323C203659156 @default.
- W4285121323 hasConceptScore W4285121323C2777200299 @default.
- W4285121323 hasConceptScore W4285121323C2777877512 @default.
- W4285121323 hasConceptScore W4285121323C2778321746 @default.
- W4285121323 hasConceptScore W4285121323C2780451532 @default.
- W4285121323 hasConceptScore W4285121323C31084985 @default.
- W4285121323 hasConceptScore W4285121323C40422974 @default.
- W4285121323 hasConceptScore W4285121323C41008148 @default.
- W4285121323 hasConceptScore W4285121323C46312422 @default.
- W4285121323 hasConceptScore W4285121323C542102704 @default.
- W4285121323 hasConceptScore W4285121323C77805123 @default.
- W4285121323 hasConceptScore W4285121323C78519656 @default.
- W4285121323 hasLocation W42851213231 @default.
- W4285121323 hasOpenAccess W4285121323 @default.
- W4285121323 hasPrimaryLocation W42851213231 @default.
- W4285121323 hasRelatedWork W2131757771 @default.
- W4285121323 hasRelatedWork W2486181377 @default.
- W4285121323 hasRelatedWork W2794637901 @default.
- W4285121323 hasRelatedWork W3086703268 @default.
- W4285121323 hasRelatedWork W3138480152 @default.
- W4285121323 hasRelatedWork W3213382954 @default.
- W4285121323 hasRelatedWork W4285121323 @default.
- W4285121323 hasRelatedWork W4313307414 @default.
- W4285121323 hasRelatedWork W93380117 @default.
- W4285121323 hasRelatedWork W4232806123 @default.
- W4285121323 isParatext "false" @default.
- W4285121323 isRetracted "false" @default.
- W4285121323 workType "article" @default.