Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285122008> ?p ?o ?g. }
- W4285122008 endingPage "7906" @default.
- W4285122008 startingPage "7900" @default.
- W4285122008 abstract "We have generated an open-source dataset of over 30 000 organic chemistry gas phase partition functions. With this data, a machine learning deep neural network estimator was trained to predict partition functions of unknown organic chemistry gas phase transition states. This estimator only relies on reactant and product geometries and partition functions. A second machine learning deep neural network was trained to predict partition functions of chemical species from their geometry. Our models accurately predict the logarithm of test set partition functions with a maximum mean absolute error of 2.7%. Thus, this approach provides a means to reduce the cost of computing reaction rate constants ab initio. The models were also used to compute transition state theory reaction rate constant prefactors and the results were in quantitative agreement with the corresponding ab initio calculations with an accuracy of 98.3% on the log scale." @default.
- W4285122008 created "2022-07-14" @default.
- W4285122008 creator A5016462450 @default.
- W4285122008 creator A5023289644 @default.
- W4285122008 date "2022-01-01" @default.
- W4285122008 modified "2023-09-30" @default.
- W4285122008 title "Low-cost prediction of molecular and transition state partition functions <i>via</i> machine learning" @default.
- W4285122008 cites W1630881305 @default.
- W4285122008 cites W1973166400 @default.
- W4285122008 cites W1998162823 @default.
- W4285122008 cites W2002774449 @default.
- W4285122008 cites W2015197254 @default.
- W4285122008 cites W2060531713 @default.
- W4285122008 cites W2060586571 @default.
- W4285122008 cites W2075929048 @default.
- W4285122008 cites W2078664343 @default.
- W4285122008 cites W2092144432 @default.
- W4285122008 cites W2104489082 @default.
- W4285122008 cites W2122427541 @default.
- W4285122008 cites W2321750218 @default.
- W4285122008 cites W2515090858 @default.
- W4285122008 cites W2527189750 @default.
- W4285122008 cites W2588919310 @default.
- W4285122008 cites W2593855134 @default.
- W4285122008 cites W2737127163 @default.
- W4285122008 cites W2768496888 @default.
- W4285122008 cites W2794704841 @default.
- W4285122008 cites W2884430236 @default.
- W4285122008 cites W2901942917 @default.
- W4285122008 cites W2903262661 @default.
- W4285122008 cites W2964233714 @default.
- W4285122008 cites W2967274741 @default.
- W4285122008 cites W2968909424 @default.
- W4285122008 cites W2992233167 @default.
- W4285122008 cites W3000999892 @default.
- W4285122008 cites W3012519883 @default.
- W4285122008 cites W3013857270 @default.
- W4285122008 cites W3021539081 @default.
- W4285122008 cites W3042251919 @default.
- W4285122008 cites W3045006440 @default.
- W4285122008 cites W3092617600 @default.
- W4285122008 cites W3093036756 @default.
- W4285122008 cites W3094905049 @default.
- W4285122008 cites W3097214437 @default.
- W4285122008 cites W3097476496 @default.
- W4285122008 cites W3101005742 @default.
- W4285122008 cites W3103364005 @default.
- W4285122008 cites W3118349318 @default.
- W4285122008 cites W3122158565 @default.
- W4285122008 cites W3152893301 @default.
- W4285122008 cites W3173107846 @default.
- W4285122008 cites W3173507260 @default.
- W4285122008 cites W3209951148 @default.
- W4285122008 cites W4200067775 @default.
- W4285122008 cites W4285122008 @default.
- W4285122008 doi "https://doi.org/10.1039/d2sc01334g" @default.
- W4285122008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35865893" @default.
- W4285122008 hasPublicationYear "2022" @default.
- W4285122008 type Work @default.
- W4285122008 citedByCount "4" @default.
- W4285122008 countsByYear W42851220082022 @default.
- W4285122008 countsByYear W42851220082023 @default.
- W4285122008 crossrefType "journal-article" @default.
- W4285122008 hasAuthorship W4285122008A5016462450 @default.
- W4285122008 hasAuthorship W4285122008A5023289644 @default.
- W4285122008 hasBestOaLocation W42851220081 @default.
- W4285122008 hasConcept C105795698 @default.
- W4285122008 hasConcept C114614502 @default.
- W4285122008 hasConcept C119857082 @default.
- W4285122008 hasConcept C121332964 @default.
- W4285122008 hasConcept C121864883 @default.
- W4285122008 hasConcept C134306372 @default.
- W4285122008 hasConcept C148898269 @default.
- W4285122008 hasConcept C178790620 @default.
- W4285122008 hasConcept C183971685 @default.
- W4285122008 hasConcept C185429906 @default.
- W4285122008 hasConcept C185592680 @default.
- W4285122008 hasConcept C192552737 @default.
- W4285122008 hasConcept C2778401447 @default.
- W4285122008 hasConcept C2781442258 @default.
- W4285122008 hasConcept C32909587 @default.
- W4285122008 hasConcept C33923547 @default.
- W4285122008 hasConcept C39927690 @default.
- W4285122008 hasConcept C41008148 @default.
- W4285122008 hasConcept C42812 @default.
- W4285122008 hasConcept C50644808 @default.
- W4285122008 hasConcept C62520636 @default.
- W4285122008 hasConcept C93391505 @default.
- W4285122008 hasConcept C97355855 @default.
- W4285122008 hasConceptScore W4285122008C105795698 @default.
- W4285122008 hasConceptScore W4285122008C114614502 @default.
- W4285122008 hasConceptScore W4285122008C119857082 @default.
- W4285122008 hasConceptScore W4285122008C121332964 @default.
- W4285122008 hasConceptScore W4285122008C121864883 @default.
- W4285122008 hasConceptScore W4285122008C134306372 @default.
- W4285122008 hasConceptScore W4285122008C148898269 @default.
- W4285122008 hasConceptScore W4285122008C178790620 @default.
- W4285122008 hasConceptScore W4285122008C183971685 @default.