Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285122212> ?p ?o ?g. }
- W4285122212 endingPage "20613" @default.
- W4285122212 startingPage "20601" @default.
- W4285122212 abstract "Detection and localization of road accidents in real-time is an integral part of the Intelligent Transportation System (ITS). Even though the existing road accident detection methods show promising results, the process suffers from some drawbacks. For example, existing methods require a large number of sample videos for feature learning. Moreover, features such as temporal gradients or flow fields are time-consuming. To address these issues, we introduce a new method that uses objects and their positions to detect accidents in real-time. Apart from localization of the accident events in videos, we perform a high-level post processing to describe the severity and context of an accident. Firstly, we divide an input video into pre-accident, accident and post-accident stages to extract object interactions. These interaction proposals are then filtered using a refinement algorithm. We then adopt an iterative training procedure to classify normal and accident interactions. We also highlight the damaged zone using heat maps. Finally, we generate high-level textual descriptions to quantify the context and severity of an accident. We have trained the proposed model using offline setups. However, it can be deployed online to detect road accident events in real-time by taking the video inputs directly from the CCTV camera. Moreover, with a minimal supervision, the model can be retrained for online surveillance. Extensive experiments carried out on UCF Crime and CADP datasets reveal that the proposed framework achieves state-of-the-art performance when compared with the recently proposed accident event detection methods in terms of AUC (UCF Crime: 69.70% and CADP: 72.59%) and FAR (UCF Crime: 0.8 and CADP: 2.2). The high-level description of the accident is an added advantage that will certainly help the traffic police to react in a timely manner." @default.
- W4285122212 created "2022-07-14" @default.
- W4285122212 creator A5011110321 @default.
- W4285122212 creator A5014088881 @default.
- W4285122212 creator A5023109720 @default.
- W4285122212 creator A5059391073 @default.
- W4285122212 creator A5080643325 @default.
- W4285122212 date "2022-11-01" @default.
- W4285122212 modified "2023-09-24" @default.
- W4285122212 title "Object Interaction-Based Localization and Description of Road Accident Events Using Deep Learning" @default.
- W4285122212 cites W1522734439 @default.
- W4285122212 cites W1967456674 @default.
- W4285122212 cites W2016053056 @default.
- W4285122212 cites W2126574503 @default.
- W4285122212 cites W2136443155 @default.
- W4285122212 cites W2139413263 @default.
- W4285122212 cites W2163612318 @default.
- W4285122212 cites W2194775991 @default.
- W4285122212 cites W2254507976 @default.
- W4285122212 cites W2295107390 @default.
- W4285122212 cites W2341058432 @default.
- W4285122212 cites W2417429787 @default.
- W4285122212 cites W2418256651 @default.
- W4285122212 cites W2552458219 @default.
- W4285122212 cites W2618757996 @default.
- W4285122212 cites W2763384612 @default.
- W4285122212 cites W2773524065 @default.
- W4285122212 cites W2806282362 @default.
- W4285122212 cites W2900787926 @default.
- W4285122212 cites W2921491036 @default.
- W4285122212 cites W2963240734 @default.
- W4285122212 cites W2963315828 @default.
- W4285122212 cites W2963524571 @default.
- W4285122212 cites W2963697717 @default.
- W4285122212 cites W2963795951 @default.
- W4285122212 cites W2965904675 @default.
- W4285122212 cites W2966477225 @default.
- W4285122212 cites W2967043539 @default.
- W4285122212 cites W2970271202 @default.
- W4285122212 cites W3007708545 @default.
- W4285122212 cites W3035564946 @default.
- W4285122212 cites W3112836416 @default.
- W4285122212 cites W3130804049 @default.
- W4285122212 cites W4301963599 @default.
- W4285122212 doi "https://doi.org/10.1109/tits.2022.3170648" @default.
- W4285122212 hasPublicationYear "2022" @default.
- W4285122212 type Work @default.
- W4285122212 citedByCount "1" @default.
- W4285122212 countsByYear W42851222122023 @default.
- W4285122212 crossrefType "journal-article" @default.
- W4285122212 hasAuthorship W4285122212A5011110321 @default.
- W4285122212 hasAuthorship W4285122212A5014088881 @default.
- W4285122212 hasAuthorship W4285122212A5023109720 @default.
- W4285122212 hasAuthorship W4285122212A5059391073 @default.
- W4285122212 hasAuthorship W4285122212A5080643325 @default.
- W4285122212 hasConcept C111472728 @default.
- W4285122212 hasConcept C111919701 @default.
- W4285122212 hasConcept C119857082 @default.
- W4285122212 hasConcept C121332964 @default.
- W4285122212 hasConcept C124101348 @default.
- W4285122212 hasConcept C127413603 @default.
- W4285122212 hasConcept C138885662 @default.
- W4285122212 hasConcept C151730666 @default.
- W4285122212 hasConcept C153180895 @default.
- W4285122212 hasConcept C154945302 @default.
- W4285122212 hasConcept C22212356 @default.
- W4285122212 hasConcept C2776151529 @default.
- W4285122212 hasConcept C2776401178 @default.
- W4285122212 hasConcept C2779343474 @default.
- W4285122212 hasConcept C2779662365 @default.
- W4285122212 hasConcept C2780289543 @default.
- W4285122212 hasConcept C3018122277 @default.
- W4285122212 hasConcept C31972630 @default.
- W4285122212 hasConcept C41008148 @default.
- W4285122212 hasConcept C41895202 @default.
- W4285122212 hasConcept C47796450 @default.
- W4285122212 hasConcept C62520636 @default.
- W4285122212 hasConcept C79403827 @default.
- W4285122212 hasConcept C86803240 @default.
- W4285122212 hasConcept C98045186 @default.
- W4285122212 hasConceptScore W4285122212C111472728 @default.
- W4285122212 hasConceptScore W4285122212C111919701 @default.
- W4285122212 hasConceptScore W4285122212C119857082 @default.
- W4285122212 hasConceptScore W4285122212C121332964 @default.
- W4285122212 hasConceptScore W4285122212C124101348 @default.
- W4285122212 hasConceptScore W4285122212C127413603 @default.
- W4285122212 hasConceptScore W4285122212C138885662 @default.
- W4285122212 hasConceptScore W4285122212C151730666 @default.
- W4285122212 hasConceptScore W4285122212C153180895 @default.
- W4285122212 hasConceptScore W4285122212C154945302 @default.
- W4285122212 hasConceptScore W4285122212C22212356 @default.
- W4285122212 hasConceptScore W4285122212C2776151529 @default.
- W4285122212 hasConceptScore W4285122212C2776401178 @default.
- W4285122212 hasConceptScore W4285122212C2779343474 @default.
- W4285122212 hasConceptScore W4285122212C2779662365 @default.
- W4285122212 hasConceptScore W4285122212C2780289543 @default.
- W4285122212 hasConceptScore W4285122212C3018122277 @default.
- W4285122212 hasConceptScore W4285122212C31972630 @default.