Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285123772> ?p ?o ?g. }
- W4285123772 endingPage "14469" @default.
- W4285123772 startingPage "14458" @default.
- W4285123772 abstract "An electronic nose (E-nose) based on three metal oxide semiconductor (MOS) gas sensors is designed to quantitatively analyse six types of volatile organic compounds (VOCs). Support vector machine (SVM), extreme learning machine (ELM), and back-propagation (BP) neural network, are used to design different classifiers and regressors for integrating a suitable pattern recognition model of the E-nose system. By using the output of the classifier as one of the input features of the regressor, the models can predict the concentration of different types of VOCs at the same time. The 5-fold cross-validation is applied to search optimal parameters of each model and the independent test is conducted to evaluate the generalization performance. A pipeline is used to connect the best classifier and the best regressor, constructing an integrated model for pattern recognition. The integrated model based on ELM-ELM structure exhibits the best performance. Classification accuracy can be as high as 99% and the R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> score of regression as high as 0.97 in the 5-fold cross-validation. Classification accuracy is up to 93% and the R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> score of regression is up to 0.94 in the independent tests. Furthermore, the integrated model has prominent training and test efficiency, of which time consumptions are both shorter than 0.1 s. This work provides an approach to design an efficient integrated model with high performance for gas type identification and concentration prediction in the E-nose system." @default.
- W4285123772 created "2022-07-14" @default.
- W4285123772 creator A5004240171 @default.
- W4285123772 creator A5022510726 @default.
- W4285123772 creator A5025207916 @default.
- W4285123772 creator A5035185672 @default.
- W4285123772 creator A5040339760 @default.
- W4285123772 creator A5044553021 @default.
- W4285123772 creator A5045556326 @default.
- W4285123772 creator A5053254989 @default.
- W4285123772 creator A5057222259 @default.
- W4285123772 creator A5082102582 @default.
- W4285123772 date "2022-07-15" @default.
- W4285123772 modified "2023-10-16" @default.
- W4285123772 title "Classification and Concentration Prediction of VOCs With High Accuracy Based on an Electronic Nose Using an ELM-ELM Integrated Algorithm" @default.
- W4285123772 cites W1482766191 @default.
- W4285123772 cites W1498436455 @default.
- W4285123772 cites W1973798705 @default.
- W4285123772 cites W1974076946 @default.
- W4285123772 cites W2015997152 @default.
- W4285123772 cites W2022740958 @default.
- W4285123772 cites W2026131661 @default.
- W4285123772 cites W2027461913 @default.
- W4285123772 cites W2029195896 @default.
- W4285123772 cites W2041105792 @default.
- W4285123772 cites W2043228294 @default.
- W4285123772 cites W2059477850 @default.
- W4285123772 cites W2111072639 @default.
- W4285123772 cites W2114354594 @default.
- W4285123772 cites W2121204784 @default.
- W4285123772 cites W2122841949 @default.
- W4285123772 cites W2151591509 @default.
- W4285123772 cites W2178763567 @default.
- W4285123772 cites W2288564646 @default.
- W4285123772 cites W2353157675 @default.
- W4285123772 cites W2415757004 @default.
- W4285123772 cites W2460369547 @default.
- W4285123772 cites W2560700869 @default.
- W4285123772 cites W2581527615 @default.
- W4285123772 cites W2593994206 @default.
- W4285123772 cites W2745470483 @default.
- W4285123772 cites W2775547370 @default.
- W4285123772 cites W2793123423 @default.
- W4285123772 cites W2902832849 @default.
- W4285123772 cites W2946775560 @default.
- W4285123772 cites W2990673574 @default.
- W4285123772 cites W2996630866 @default.
- W4285123772 cites W2999298387 @default.
- W4285123772 cites W3001243934 @default.
- W4285123772 cites W3004555793 @default.
- W4285123772 cites W3008666156 @default.
- W4285123772 cites W3011774628 @default.
- W4285123772 cites W3023448038 @default.
- W4285123772 cites W3027277555 @default.
- W4285123772 cites W3027472798 @default.
- W4285123772 cites W3048926634 @default.
- W4285123772 cites W3081625936 @default.
- W4285123772 cites W3088516434 @default.
- W4285123772 cites W3094341071 @default.
- W4285123772 cites W3100835067 @default.
- W4285123772 cites W3108323756 @default.
- W4285123772 cites W3191459604 @default.
- W4285123772 cites W3206760989 @default.
- W4285123772 cites W4239510810 @default.
- W4285123772 doi "https://doi.org/10.1109/jsen.2022.3176647" @default.
- W4285123772 hasPublicationYear "2022" @default.
- W4285123772 type Work @default.
- W4285123772 citedByCount "6" @default.
- W4285123772 countsByYear W42851237722023 @default.
- W4285123772 crossrefType "journal-article" @default.
- W4285123772 hasAuthorship W4285123772A5004240171 @default.
- W4285123772 hasAuthorship W4285123772A5022510726 @default.
- W4285123772 hasAuthorship W4285123772A5025207916 @default.
- W4285123772 hasAuthorship W4285123772A5035185672 @default.
- W4285123772 hasAuthorship W4285123772A5040339760 @default.
- W4285123772 hasAuthorship W4285123772A5044553021 @default.
- W4285123772 hasAuthorship W4285123772A5045556326 @default.
- W4285123772 hasAuthorship W4285123772A5053254989 @default.
- W4285123772 hasAuthorship W4285123772A5057222259 @default.
- W4285123772 hasAuthorship W4285123772A5082102582 @default.
- W4285123772 hasConcept C105795698 @default.
- W4285123772 hasConcept C11413529 @default.
- W4285123772 hasConcept C119857082 @default.
- W4285123772 hasConcept C12267149 @default.
- W4285123772 hasConcept C153180895 @default.
- W4285123772 hasConcept C154945302 @default.
- W4285123772 hasConcept C169258074 @default.
- W4285123772 hasConcept C23895516 @default.
- W4285123772 hasConcept C27181475 @default.
- W4285123772 hasConcept C2780150128 @default.
- W4285123772 hasConcept C33923547 @default.
- W4285123772 hasConcept C41008148 @default.
- W4285123772 hasConcept C50644808 @default.
- W4285123772 hasConcept C83546350 @default.
- W4285123772 hasConcept C95623464 @default.
- W4285123772 hasConceptScore W4285123772C105795698 @default.
- W4285123772 hasConceptScore W4285123772C11413529 @default.
- W4285123772 hasConceptScore W4285123772C119857082 @default.