Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285125722> ?p ?o ?g. }
- W4285125722 endingPage "7147" @default.
- W4285125722 startingPage "7140" @default.
- W4285125722 abstract "Due to the increasing complexity of robotic structures, modelling robots is becoming more and more challenging, and analytical models are very difficult to build. Machine learning approaches have shown great capabilities in learning complex mapping and have widely been used in robot model learning and control. Generally, the inverse kinematics is directly learned, yet, learning the forward kinematics is simpler and allows computing exploiting the optimality of the controllers. Nevertheless, the learning method has no knowledge about the differential relationship between the position and velocity mappings. Currently, few works have targeted learning full robot poses considering both position and orientation. In this letter, we present a novel feedforward Artificial Neural network (ANN) architecture to learn full robot pose in SE(3) incorporating differential relationships in the learning process. Simulation and real world experiments show the capabilities of the proposed network to properly model the robot pose and its advantages over standard ANN." @default.
- W4285125722 created "2022-07-14" @default.
- W4285125722 creator A5031101437 @default.
- W4285125722 creator A5031905138 @default.
- W4285125722 creator A5036281885 @default.
- W4285125722 creator A5062134436 @default.
- W4285125722 creator A5084751535 @default.
- W4285125722 date "2022-07-01" @default.
- W4285125722 modified "2023-10-05" @default.
- W4285125722 title "Augmented Neural Network for Full Robot Kinematic Modelling in SE(3)" @default.
- W4285125722 cites W1560270123 @default.
- W4285125722 cites W1997543377 @default.
- W4285125722 cites W2008026620 @default.
- W4285125722 cites W2132558143 @default.
- W4285125722 cites W2134159355 @default.
- W4285125722 cites W2146902249 @default.
- W4285125722 cites W2168921921 @default.
- W4285125722 cites W2523642729 @default.
- W4285125722 cites W2740105858 @default.
- W4285125722 cites W2910440184 @default.
- W4285125722 cites W2949924544 @default.
- W4285125722 cites W2963188159 @default.
- W4285125722 cites W2974859226 @default.
- W4285125722 cites W2979962809 @default.
- W4285125722 cites W3003922491 @default.
- W4285125722 cites W3036541334 @default.
- W4285125722 cites W3081951288 @default.
- W4285125722 cites W3089687026 @default.
- W4285125722 cites W3095517446 @default.
- W4285125722 cites W3101017148 @default.
- W4285125722 cites W3134987525 @default.
- W4285125722 cites W3164441713 @default.
- W4285125722 cites W3207539171 @default.
- W4285125722 cites W3212522086 @default.
- W4285125722 cites W4200363554 @default.
- W4285125722 cites W4205586185 @default.
- W4285125722 cites W4206900136 @default.
- W4285125722 cites W4285294661 @default.
- W4285125722 cites W4309416533 @default.
- W4285125722 doi "https://doi.org/10.1109/lra.2022.3180428" @default.
- W4285125722 hasPublicationYear "2022" @default.
- W4285125722 type Work @default.
- W4285125722 citedByCount "6" @default.
- W4285125722 countsByYear W42851257222022 @default.
- W4285125722 countsByYear W42851257222023 @default.
- W4285125722 crossrefType "journal-article" @default.
- W4285125722 hasAuthorship W4285125722A5031101437 @default.
- W4285125722 hasAuthorship W4285125722A5031905138 @default.
- W4285125722 hasAuthorship W4285125722A5036281885 @default.
- W4285125722 hasAuthorship W4285125722A5062134436 @default.
- W4285125722 hasAuthorship W4285125722A5084751535 @default.
- W4285125722 hasBestOaLocation W42851257221 @default.
- W4285125722 hasConcept C10138342 @default.
- W4285125722 hasConcept C111919701 @default.
- W4285125722 hasConcept C121332964 @default.
- W4285125722 hasConcept C127413603 @default.
- W4285125722 hasConcept C133731056 @default.
- W4285125722 hasConcept C154945302 @default.
- W4285125722 hasConcept C162324750 @default.
- W4285125722 hasConcept C17816587 @default.
- W4285125722 hasConcept C188888258 @default.
- W4285125722 hasConcept C198082294 @default.
- W4285125722 hasConcept C19966478 @default.
- W4285125722 hasConcept C38858127 @default.
- W4285125722 hasConcept C39920418 @default.
- W4285125722 hasConcept C41008148 @default.
- W4285125722 hasConcept C47702885 @default.
- W4285125722 hasConcept C50644808 @default.
- W4285125722 hasConcept C65401140 @default.
- W4285125722 hasConcept C74222875 @default.
- W4285125722 hasConcept C74650414 @default.
- W4285125722 hasConcept C90509273 @default.
- W4285125722 hasConcept C98045186 @default.
- W4285125722 hasConceptScore W4285125722C10138342 @default.
- W4285125722 hasConceptScore W4285125722C111919701 @default.
- W4285125722 hasConceptScore W4285125722C121332964 @default.
- W4285125722 hasConceptScore W4285125722C127413603 @default.
- W4285125722 hasConceptScore W4285125722C133731056 @default.
- W4285125722 hasConceptScore W4285125722C154945302 @default.
- W4285125722 hasConceptScore W4285125722C162324750 @default.
- W4285125722 hasConceptScore W4285125722C17816587 @default.
- W4285125722 hasConceptScore W4285125722C188888258 @default.
- W4285125722 hasConceptScore W4285125722C198082294 @default.
- W4285125722 hasConceptScore W4285125722C19966478 @default.
- W4285125722 hasConceptScore W4285125722C38858127 @default.
- W4285125722 hasConceptScore W4285125722C39920418 @default.
- W4285125722 hasConceptScore W4285125722C41008148 @default.
- W4285125722 hasConceptScore W4285125722C47702885 @default.
- W4285125722 hasConceptScore W4285125722C50644808 @default.
- W4285125722 hasConceptScore W4285125722C65401140 @default.
- W4285125722 hasConceptScore W4285125722C74222875 @default.
- W4285125722 hasConceptScore W4285125722C74650414 @default.
- W4285125722 hasConceptScore W4285125722C90509273 @default.
- W4285125722 hasConceptScore W4285125722C98045186 @default.
- W4285125722 hasFunder F4320334627 @default.
- W4285125722 hasIssue "3" @default.
- W4285125722 hasLocation W42851257221 @default.
- W4285125722 hasLocation W42851257222 @default.