Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285132557> ?p ?o ?g. }
- W4285132557 endingPage "594" @default.
- W4285132557 startingPage "583" @default.
- W4285132557 abstract "Since the coronavirus disease has been declared a global pandemic, it had posed a challenge among researchers and raised common awareness and collaborative efforts towards finding the solution. Caused by severe acute respiratory coronavirus syndrome-2 (SARS-CoV-2), coronavirus drug design strategy needs to be optimized. It is understandable that cognizance of the pathobiology of COVID-19 can help scientists in the development and discovery of therapeutically effective antiviral drugs by elucidating the unknown viral pathways and structures. Considering the role of artificial intelligence and machine learning with its advancements in the field of science, it is rational to use these methods which can aid in the discovery of new potent candidates in silico. Our review utilizes similar methodologies and focuses on RNA-dependent RNA polymerase (RdRp), based on its importance as an essential element for virus replication and also a promising target for COVID-19 therapeutics. Artificial neural network technique was used to shortlist articles with the support of PRISMA, from different research platforms including Scopus, PubMed, PubChem, and Web of Science, through a combination of keywords. English language, from the year 2000 and published articles in journals were selected to carry out this research. We summarized that structural details of the RdRp reviewed in this analysis will have the potential to be taken into consideration when developing therapeutic solutions and if further multidisciplinary efforts are taken in this domain then potential clinical candidates for RdRp of SARS-CoV-2 could be successfully delivered for experimental validations." @default.
- W4285132557 created "2022-07-14" @default.
- W4285132557 creator A5025497369 @default.
- W4285132557 creator A5035316784 @default.
- W4285132557 date "2022-01-01" @default.
- W4285132557 modified "2023-10-11" @default.
- W4285132557 title "A systematic review of RdRp of SARS-CoV-2 through artificial intelligence and machine learning utilizing structure-based drug design strategy" @default.
- W4285132557 cites W1019830208 @default.
- W4285132557 cites W1504367890 @default.
- W4285132557 cites W1857763546 @default.
- W4285132557 cites W1932632320 @default.
- W4285132557 cites W1972132067 @default.
- W4285132557 cites W1973648815 @default.
- W4285132557 cites W1982559408 @default.
- W4285132557 cites W2007539022 @default.
- W4285132557 cites W2044080338 @default.
- W4285132557 cites W2058524504 @default.
- W4285132557 cites W2060573127 @default.
- W4285132557 cites W2081640821 @default.
- W4285132557 cites W2103469603 @default.
- W4285132557 cites W2117455984 @default.
- W4285132557 cites W2117717845 @default.
- W4285132557 cites W2140943911 @default.
- W4285132557 cites W2146570410 @default.
- W4285132557 cites W2169198329 @default.
- W4285132557 cites W2169558621 @default.
- W4285132557 cites W2322338678 @default.
- W4285132557 cites W2344164424 @default.
- W4285132557 cites W2518137561 @default.
- W4285132557 cites W2519928122 @default.
- W4285132557 cites W2552412210 @default.
- W4285132557 cites W2584728218 @default.
- W4285132557 cites W2725497285 @default.
- W4285132557 cites W2767026301 @default.
- W4285132557 cites W2885020292 @default.
- W4285132557 cites W2903102808 @default.
- W4285132557 cites W2914796231 @default.
- W4285132557 cites W2923570044 @default.
- W4285132557 cites W2964677890 @default.
- W4285132557 cites W2965844971 @default.
- W4285132557 cites W2980595500 @default.
- W4285132557 cites W3001717902 @default.
- W4285132557 cites W3003465021 @default.
- W4285132557 cites W3005212621 @default.
- W4285132557 cites W3007227604 @default.
- W4285132557 cites W3007643904 @default.
- W4285132557 cites W3008142620 @default.
- W4285132557 cites W3008362582 @default.
- W4285132557 cites W3009577418 @default.
- W4285132557 cites W3009906937 @default.
- W4285132557 cites W3011072970 @default.
- W4285132557 cites W3011149445 @default.
- W4285132557 cites W3011662277 @default.
- W4285132557 cites W3011701533 @default.
- W4285132557 cites W3013365475 @default.
- W4285132557 cites W3014248459 @default.
- W4285132557 cites W3015429854 @default.
- W4285132557 cites W3017291089 @default.
- W4285132557 cites W3022734398 @default.
- W4285132557 cites W3024057275 @default.
- W4285132557 cites W3025511956 @default.
- W4285132557 cites W3027231799 @default.
- W4285132557 cites W3028150695 @default.
- W4285132557 cites W3032737826 @default.
- W4285132557 cites W3036197093 @default.
- W4285132557 cites W3043635878 @default.
- W4285132557 cites W3045075737 @default.
- W4285132557 cites W3049200404 @default.
- W4285132557 cites W3081062975 @default.
- W4285132557 cites W3083344141 @default.
- W4285132557 cites W3087833333 @default.
- W4285132557 cites W3089169829 @default.
- W4285132557 cites W3095079038 @default.
- W4285132557 cites W3108130218 @default.
- W4285132557 cites W311927316 @default.
- W4285132557 cites W3119787853 @default.
- W4285132557 cites W3121820588 @default.
- W4285132557 cites W3123421077 @default.
- W4285132557 cites W3124366280 @default.
- W4285132557 cites W3183369597 @default.
- W4285132557 doi "https://doi.org/10.55730/1300-0527.3355" @default.
- W4285132557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37720604" @default.
- W4285132557 hasPublicationYear "2022" @default.
- W4285132557 type Work @default.
- W4285132557 citedByCount "0" @default.
- W4285132557 crossrefType "journal-article" @default.
- W4285132557 hasAuthorship W4285132557A5025497369 @default.
- W4285132557 hasAuthorship W4285132557A5035316784 @default.
- W4285132557 hasBestOaLocation W42851325571 @default.
- W4285132557 hasConcept C104317684 @default.
- W4285132557 hasConcept C142724271 @default.
- W4285132557 hasConcept C154945302 @default.
- W4285132557 hasConcept C158180186 @default.
- W4285132557 hasConcept C2775905019 @default.
- W4285132557 hasConcept C2777648638 @default.
- W4285132557 hasConcept C2779134260 @default.
- W4285132557 hasConcept C3008058167 @default.
- W4285132557 hasConcept C41008148 @default.