Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285133154> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4285133154 endingPage "5" @default.
- W4285133154 startingPage "1" @default.
- W4285133154 abstract "This letter proposes a novel method based on Deep Learning (DL) to forest species classification in airborne Light Detection and Ranging (LiDAR) data. Differently from the state-of- the-art approaches, the proposed method: (1) does not assume any prior knowledge either on the forest to be classified or on the sensor used to acquire the LiDAR data, and (2) can be applied to heterogeneous forest characterized by mixed species. First, the 3D point cloud of each individual tree is decomposed into 8 angular sectors to generate a multi-slices representation of the vertical structure of the tree. This representation models the foliage, the stem and the branches of the tree crown as well as depicts the internal and external crown properties. Then, a Multi-View CNN (MVCNN) DL automatically extracts features used to discriminate the different tree species. This network is pre-trained on the massive ImageNet database, thus guaranteeing fast convergence with a relatively small number of ground reference data. Experiments were carried out on high density airborne LiDAR data collected over a multi-layer multi-age forest characterized by four conifers and three broadleaf species. The proposed method outperformed the state-of-the-art approaches increasing the Overall Accuracy (OA) up to 16% and 18.9% compared to a DL and a shallow tree species classification methods, respectively. When applied to coniferous or broadlaef forests, the proposed method showed an increase of OA 10.1% and 15.9% (for conifers), and 9.5% and 21.6% (for broadleafs) compared to the DL and shallow methods, respectively." @default.
- W4285133154 created "2022-07-14" @default.
- W4285133154 creator A5006095323 @default.
- W4285133154 creator A5008344573 @default.
- W4285133154 creator A5018193287 @default.
- W4285133154 date "2022-01-01" @default.
- W4285133154 modified "2023-09-29" @default.
- W4285133154 title "An Approach Based on Deep Learning for Tree Species Classification in LiDAR Data Acquired in Mixed Forest" @default.
- W4285133154 cites W1644641054 @default.
- W4285133154 cites W1652321627 @default.
- W4285133154 cites W2055734610 @default.
- W4285133154 cites W2181716224 @default.
- W4285133154 cites W2588926339 @default.
- W4285133154 cites W2618530766 @default.
- W4285133154 cites W2767814567 @default.
- W4285133154 cites W2987303464 @default.
- W4285133154 cites W3121749275 @default.
- W4285133154 cites W3136555145 @default.
- W4285133154 doi "https://doi.org/10.1109/lgrs.2022.3181680" @default.
- W4285133154 hasPublicationYear "2022" @default.
- W4285133154 type Work @default.
- W4285133154 citedByCount "2" @default.
- W4285133154 countsByYear W42851331542022 @default.
- W4285133154 countsByYear W42851331542023 @default.
- W4285133154 crossrefType "journal-article" @default.
- W4285133154 hasAuthorship W4285133154A5006095323 @default.
- W4285133154 hasAuthorship W4285133154A5008344573 @default.
- W4285133154 hasAuthorship W4285133154A5018193287 @default.
- W4285133154 hasConcept C108583219 @default.
- W4285133154 hasConcept C113174947 @default.
- W4285133154 hasConcept C115051666 @default.
- W4285133154 hasConcept C131979681 @default.
- W4285133154 hasConcept C134306372 @default.
- W4285133154 hasConcept C153180895 @default.
- W4285133154 hasConcept C154945302 @default.
- W4285133154 hasConcept C199343813 @default.
- W4285133154 hasConcept C205649164 @default.
- W4285133154 hasConcept C2778400979 @default.
- W4285133154 hasConcept C33923547 @default.
- W4285133154 hasConcept C41008148 @default.
- W4285133154 hasConcept C51399673 @default.
- W4285133154 hasConcept C62649853 @default.
- W4285133154 hasConcept C71924100 @default.
- W4285133154 hasConcept C76155785 @default.
- W4285133154 hasConceptScore W4285133154C108583219 @default.
- W4285133154 hasConceptScore W4285133154C113174947 @default.
- W4285133154 hasConceptScore W4285133154C115051666 @default.
- W4285133154 hasConceptScore W4285133154C131979681 @default.
- W4285133154 hasConceptScore W4285133154C134306372 @default.
- W4285133154 hasConceptScore W4285133154C153180895 @default.
- W4285133154 hasConceptScore W4285133154C154945302 @default.
- W4285133154 hasConceptScore W4285133154C199343813 @default.
- W4285133154 hasConceptScore W4285133154C205649164 @default.
- W4285133154 hasConceptScore W4285133154C2778400979 @default.
- W4285133154 hasConceptScore W4285133154C33923547 @default.
- W4285133154 hasConceptScore W4285133154C41008148 @default.
- W4285133154 hasConceptScore W4285133154C51399673 @default.
- W4285133154 hasConceptScore W4285133154C62649853 @default.
- W4285133154 hasConceptScore W4285133154C71924100 @default.
- W4285133154 hasConceptScore W4285133154C76155785 @default.
- W4285133154 hasLocation W42851331541 @default.
- W4285133154 hasOpenAccess W4285133154 @default.
- W4285133154 hasPrimaryLocation W42851331541 @default.
- W4285133154 hasRelatedWork W1561699119 @default.
- W4285133154 hasRelatedWork W1882707605 @default.
- W4285133154 hasRelatedWork W2030080266 @default.
- W4285133154 hasRelatedWork W2272572439 @default.
- W4285133154 hasRelatedWork W2391506322 @default.
- W4285133154 hasRelatedWork W2746940507 @default.
- W4285133154 hasRelatedWork W3080305507 @default.
- W4285133154 hasRelatedWork W3096213782 @default.
- W4285133154 hasRelatedWork W4214729122 @default.
- W4285133154 hasRelatedWork W2189250119 @default.
- W4285133154 hasVolume "19" @default.
- W4285133154 isParatext "false" @default.
- W4285133154 isRetracted "false" @default.
- W4285133154 workType "article" @default.