Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285134479> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4285134479 endingPage "202" @default.
- W4285134479 startingPage "190" @default.
- W4285134479 abstract "Researchers and engineers may use inferential logic and/or fuzzy logic to solve real-world causal problems. Inferential logic uses probability theories, while fuzzy logic uses its membership functions and set theories to process uncertainty and fuzziness of the events. To benefit from both logics, some researchers in the past tried to create probabilistic fuzzy logic (PFL). Deep Learning algorithms (DLs) with their incredible achievements such as very high precision results in some specific tasks are at the center of the weak AI. However, DLs fail when it comes to causal reasoning. In order to equip Deep Learning algorithms (DLs) with reasoning capabilities, one solution would be to integrate non-classical logics such as PFL with DLs. In this paper, we will demonstrate the first step toward creating a deep causal probabilistic fuzzy logic architecture capable of reasoning with missing or noisy datasets. To do so, the architecture uses fuzzy theories, probabilistic theories, and deep learning algorithms such as causal effect variational autoencoders." @default.
- W4285134479 created "2022-07-14" @default.
- W4285134479 creator A5040351534 @default.
- W4285134479 creator A5077424549 @default.
- W4285134479 creator A5082572893 @default.
- W4285134479 date "2022-01-01" @default.
- W4285134479 modified "2023-10-05" @default.
- W4285134479 title "Causal Probabilistic Based Variational Autoencoders Capable of Handling Noisy Inputs Using Fuzzy Logic Rules" @default.
- W4285134479 cites W1995450389 @default.
- W4285134479 cites W2022103311 @default.
- W4285134479 cites W2058347046 @default.
- W4285134479 cites W2064903582 @default.
- W4285134479 cites W2076686574 @default.
- W4285134479 cites W2953529749 @default.
- W4285134479 cites W3099006712 @default.
- W4285134479 cites W3110441153 @default.
- W4285134479 doi "https://doi.org/10.1007/978-3-031-10464-0_12" @default.
- W4285134479 hasPublicationYear "2022" @default.
- W4285134479 type Work @default.
- W4285134479 citedByCount "2" @default.
- W4285134479 countsByYear W42851344792023 @default.
- W4285134479 crossrefType "book-chapter" @default.
- W4285134479 hasAuthorship W4285134479A5040351534 @default.
- W4285134479 hasAuthorship W4285134479A5077424549 @default.
- W4285134479 hasAuthorship W4285134479A5082572893 @default.
- W4285134479 hasConcept C102993220 @default.
- W4285134479 hasConcept C119857082 @default.
- W4285134479 hasConcept C154945302 @default.
- W4285134479 hasConcept C18998212 @default.
- W4285134479 hasConcept C195975749 @default.
- W4285134479 hasConcept C203659156 @default.
- W4285134479 hasConcept C24404364 @default.
- W4285134479 hasConcept C29470771 @default.
- W4285134479 hasConcept C3845977 @default.
- W4285134479 hasConcept C41008148 @default.
- W4285134479 hasConcept C49937458 @default.
- W4285134479 hasConcept C52063229 @default.
- W4285134479 hasConcept C58166 @default.
- W4285134479 hasConceptScore W4285134479C102993220 @default.
- W4285134479 hasConceptScore W4285134479C119857082 @default.
- W4285134479 hasConceptScore W4285134479C154945302 @default.
- W4285134479 hasConceptScore W4285134479C18998212 @default.
- W4285134479 hasConceptScore W4285134479C195975749 @default.
- W4285134479 hasConceptScore W4285134479C203659156 @default.
- W4285134479 hasConceptScore W4285134479C24404364 @default.
- W4285134479 hasConceptScore W4285134479C29470771 @default.
- W4285134479 hasConceptScore W4285134479C3845977 @default.
- W4285134479 hasConceptScore W4285134479C41008148 @default.
- W4285134479 hasConceptScore W4285134479C49937458 @default.
- W4285134479 hasConceptScore W4285134479C52063229 @default.
- W4285134479 hasConceptScore W4285134479C58166 @default.
- W4285134479 hasLocation W42851344791 @default.
- W4285134479 hasOpenAccess W4285134479 @default.
- W4285134479 hasPrimaryLocation W42851344791 @default.
- W4285134479 hasRelatedWork W1037614398 @default.
- W4285134479 hasRelatedWork W186202677 @default.
- W4285134479 hasRelatedWork W2104279947 @default.
- W4285134479 hasRelatedWork W2108859285 @default.
- W4285134479 hasRelatedWork W2228846761 @default.
- W4285134479 hasRelatedWork W2294741258 @default.
- W4285134479 hasRelatedWork W2385259353 @default.
- W4285134479 hasRelatedWork W2462715873 @default.
- W4285134479 hasRelatedWork W4285134479 @default.
- W4285134479 hasRelatedWork W4380028574 @default.
- W4285134479 isParatext "false" @default.
- W4285134479 isRetracted "false" @default.
- W4285134479 workType "book-chapter" @default.