Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285135266> ?p ?o ?g. }
- W4285135266 endingPage "15063" @default.
- W4285135266 startingPage "15041" @default.
- W4285135266 abstract "<abstract><p>The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponential function in its kernel, we establish a new Hermite-Hadamard type integral inequality for an LR-convex interval-valued function. We also prove new fractional-order variants of the Fejér type inequalities and the Pachpatte type inequalities in the setting of pseudo-order relations. By showing several numerical examples, we further validate the accuracy of the results that we have derived in this study. We believe that the results, presented in this article are novel and that they will be beneficial in encouraging future research in this field.</p></abstract>" @default.
- W4285135266 created "2022-07-14" @default.
- W4285135266 creator A5035042448 @default.
- W4285135266 creator A5050299764 @default.
- W4285135266 creator A5059025015 @default.
- W4285135266 creator A5077715487 @default.
- W4285135266 creator A5079512627 @default.
- W4285135266 creator A5089496116 @default.
- W4285135266 date "2022-01-01" @default.
- W4285135266 modified "2023-10-03" @default.
- W4285135266 title "Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel" @default.
- W4285135266 cites W1986437163 @default.
- W4285135266 cites W2006458314 @default.
- W4285135266 cites W2059092727 @default.
- W4285135266 cites W2103233901 @default.
- W4285135266 cites W2125148806 @default.
- W4285135266 cites W2138064748 @default.
- W4285135266 cites W2304095314 @default.
- W4285135266 cites W2318890204 @default.
- W4285135266 cites W2496776199 @default.
- W4285135266 cites W2556396095 @default.
- W4285135266 cites W2570306563 @default.
- W4285135266 cites W2800481507 @default.
- W4285135266 cites W2965312062 @default.
- W4285135266 cites W2995592256 @default.
- W4285135266 cites W3000320805 @default.
- W4285135266 cites W3034362376 @default.
- W4285135266 cites W3087321204 @default.
- W4285135266 cites W3093119204 @default.
- W4285135266 cites W3164544104 @default.
- W4285135266 cites W3164799850 @default.
- W4285135266 cites W3171287299 @default.
- W4285135266 cites W3187280372 @default.
- W4285135266 cites W3201774862 @default.
- W4285135266 cites W3205405253 @default.
- W4285135266 cites W3206584540 @default.
- W4285135266 cites W3211827563 @default.
- W4285135266 cites W3215646830 @default.
- W4285135266 cites W3216813562 @default.
- W4285135266 cites W4200119862 @default.
- W4285135266 cites W4200579700 @default.
- W4285135266 cites W4205249021 @default.
- W4285135266 cites W4205475114 @default.
- W4285135266 cites W4205977837 @default.
- W4285135266 cites W4206287145 @default.
- W4285135266 cites W4206639079 @default.
- W4285135266 cites W4206659650 @default.
- W4285135266 cites W4221089321 @default.
- W4285135266 cites W4223411948 @default.
- W4285135266 cites W4238188161 @default.
- W4285135266 cites W611121171 @default.
- W4285135266 doi "https://doi.org/10.3934/math.2022824" @default.
- W4285135266 hasPublicationYear "2022" @default.
- W4285135266 type Work @default.
- W4285135266 citedByCount "13" @default.
- W4285135266 countsByYear W42851352662022 @default.
- W4285135266 countsByYear W42851352662023 @default.
- W4285135266 crossrefType "journal-article" @default.
- W4285135266 hasAuthorship W4285135266A5035042448 @default.
- W4285135266 hasAuthorship W4285135266A5050299764 @default.
- W4285135266 hasAuthorship W4285135266A5059025015 @default.
- W4285135266 hasAuthorship W4285135266A5077715487 @default.
- W4285135266 hasAuthorship W4285135266A5079512627 @default.
- W4285135266 hasAuthorship W4285135266A5089496116 @default.
- W4285135266 hasBestOaLocation W42851352661 @default.
- W4285135266 hasConcept C104317684 @default.
- W4285135266 hasConcept C112680207 @default.
- W4285135266 hasConcept C114614502 @default.
- W4285135266 hasConcept C134306372 @default.
- W4285135266 hasConcept C145446738 @default.
- W4285135266 hasConcept C151376022 @default.
- W4285135266 hasConcept C154249771 @default.
- W4285135266 hasConcept C158448853 @default.
- W4285135266 hasConcept C17020691 @default.
- W4285135266 hasConcept C185592680 @default.
- W4285135266 hasConcept C18903297 @default.
- W4285135266 hasConcept C202444582 @default.
- W4285135266 hasConcept C2524010 @default.
- W4285135266 hasConcept C27016315 @default.
- W4285135266 hasConcept C2777299769 @default.
- W4285135266 hasConcept C2778067643 @default.
- W4285135266 hasConcept C28826006 @default.
- W4285135266 hasConcept C33923547 @default.
- W4285135266 hasConcept C53819440 @default.
- W4285135266 hasConcept C55493867 @default.
- W4285135266 hasConcept C60292330 @default.
- W4285135266 hasConcept C74193536 @default.
- W4285135266 hasConcept C75023562 @default.
- W4285135266 hasConcept C86339819 @default.
- W4285135266 hasConcept C86803240 @default.
- W4285135266 hasConceptScore W4285135266C104317684 @default.
- W4285135266 hasConceptScore W4285135266C112680207 @default.
- W4285135266 hasConceptScore W4285135266C114614502 @default.
- W4285135266 hasConceptScore W4285135266C134306372 @default.
- W4285135266 hasConceptScore W4285135266C145446738 @default.
- W4285135266 hasConceptScore W4285135266C151376022 @default.
- W4285135266 hasConceptScore W4285135266C154249771 @default.
- W4285135266 hasConceptScore W4285135266C158448853 @default.