Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285135621> ?p ?o ?g. }
- W4285135621 endingPage "50877" @default.
- W4285135621 startingPage "50864" @default.
- W4285135621 abstract "Learning ability evaluation has been critical in educational and medical fields to investigate learning achievement or cognitive impairment. Previous researchers utilized biosignal data such as functional near-infrared spectroscopy and an electroencephalogram to reflect neural variation in factors related to learning ability. Additionally, machine learning algorithms have been used to identify the inherent associations between learning ability and related factors. Herein, we propose a classification framework for college scholastic ability test levels using unsupervised features extracted from a functional near-infrared spectroscopy signal dataset based on machine learning models. To extract unsupervised features from functional near-infrared spectroscopy signals, we constructed a one-dimensional convolutional autoencoder with an electroencephalogram dataset as a transfer learning approach. Eight handcrafted features (signal mean, slope, minimum, peak, skewness, kurtosis, variance, and standard deviation) with various window length conditions were calculated to compare influences on classification performance. Five evaluation metrics (accuracy, precision, recall, F1-score, and area under the curve) were applied to evaluate the proposed framework’s performance. Among the five classification algorithms (XGBoost classifier, support vector classifier, naive Bayes classifier, decision tree classifier, and logistic regression), the XGBoost classifier was the best at classifying college scholastic ability test levels. We found that unsupervised features extracted from deep learning algorithms are more usable for classification than handcrafted features. Furthermore, the applicability of transfer learning between two different neural modals was validated using the experimental results. The results of this study provide new insights into the relationships between hemodynamics in functional near-infrared spectroscopy signals and college scholastic ability test levels." @default.
- W4285135621 created "2022-07-14" @default.
- W4285135621 creator A5010561293 @default.
- W4285135621 creator A5021018556 @default.
- W4285135621 creator A5030326457 @default.
- W4285135621 creator A5041342083 @default.
- W4285135621 creator A5048504891 @default.
- W4285135621 creator A5052041167 @default.
- W4285135621 creator A5066569021 @default.
- W4285135621 creator A5090647128 @default.
- W4285135621 date "2022-01-01" @default.
- W4285135621 modified "2023-10-05" @default.
- W4285135621 title "Machine Learning Approach for Classifying College Scholastic Ability Test Levels with Unsupervised Features from Prefrontal Functional Near-Infrared Spectroscopy Signals" @default.
- W4285135621 cites W1544165511 @default.
- W4285135621 cites W1863058241 @default.
- W4285135621 cites W1974893053 @default.
- W4285135621 cites W1980532734 @default.
- W4285135621 cites W1987052439 @default.
- W4285135621 cites W2007333865 @default.
- W4285135621 cites W2013842732 @default.
- W4285135621 cites W2023480666 @default.
- W4285135621 cites W2025583159 @default.
- W4285135621 cites W2035907019 @default.
- W4285135621 cites W2040402089 @default.
- W4285135621 cites W2045561515 @default.
- W4285135621 cites W2069982497 @default.
- W4285135621 cites W2082164479 @default.
- W4285135621 cites W2091337500 @default.
- W4285135621 cites W2099685765 @default.
- W4285135621 cites W2105062010 @default.
- W4285135621 cites W2112316358 @default.
- W4285135621 cites W2127991584 @default.
- W4285135621 cites W2128404967 @default.
- W4285135621 cites W2131914306 @default.
- W4285135621 cites W2137523819 @default.
- W4285135621 cites W2149355565 @default.
- W4285135621 cites W2154533194 @default.
- W4285135621 cites W2231596722 @default.
- W4285135621 cites W2256369587 @default.
- W4285135621 cites W2282299048 @default.
- W4285135621 cites W2316791108 @default.
- W4285135621 cites W2324394234 @default.
- W4285135621 cites W2441160157 @default.
- W4285135621 cites W2510901262 @default.
- W4285135621 cites W2561272868 @default.
- W4285135621 cites W2588765333 @default.
- W4285135621 cites W2599638598 @default.
- W4285135621 cites W2734549536 @default.
- W4285135621 cites W2754014436 @default.
- W4285135621 cites W2767138339 @default.
- W4285135621 cites W2790673686 @default.
- W4285135621 cites W2793664180 @default.
- W4285135621 cites W2793702600 @default.
- W4285135621 cites W2796024800 @default.
- W4285135621 cites W2800350051 @default.
- W4285135621 cites W2811153207 @default.
- W4285135621 cites W2924545314 @default.
- W4285135621 cites W2945228293 @default.
- W4285135621 cites W2946763314 @default.
- W4285135621 cites W2963355311 @default.
- W4285135621 cites W2964591559 @default.
- W4285135621 cites W2969841773 @default.
- W4285135621 cites W2969915343 @default.
- W4285135621 cites W2983983242 @default.
- W4285135621 cites W3003074332 @default.
- W4285135621 cites W3005328682 @default.
- W4285135621 cites W3027896923 @default.
- W4285135621 cites W3043756712 @default.
- W4285135621 cites W3046151745 @default.
- W4285135621 cites W3080756195 @default.
- W4285135621 cites W3081649117 @default.
- W4285135621 cites W3102476541 @default.
- W4285135621 cites W3105605673 @default.
- W4285135621 cites W3108528951 @default.
- W4285135621 cites W3115305254 @default.
- W4285135621 cites W311938307 @default.
- W4285135621 cites W3121931775 @default.
- W4285135621 cites W3126192134 @default.
- W4285135621 cites W3129616237 @default.
- W4285135621 cites W3156498276 @default.
- W4285135621 cites W3159420371 @default.
- W4285135621 cites W3171063258 @default.
- W4285135621 cites W3217164048 @default.
- W4285135621 cites W3217339253 @default.
- W4285135621 cites W4256049924 @default.
- W4285135621 doi "https://doi.org/10.1109/access.2022.3173629" @default.
- W4285135621 hasPublicationYear "2022" @default.
- W4285135621 type Work @default.
- W4285135621 citedByCount "0" @default.
- W4285135621 crossrefType "journal-article" @default.
- W4285135621 hasAuthorship W4285135621A5010561293 @default.
- W4285135621 hasAuthorship W4285135621A5021018556 @default.
- W4285135621 hasAuthorship W4285135621A5030326457 @default.
- W4285135621 hasAuthorship W4285135621A5041342083 @default.
- W4285135621 hasAuthorship W4285135621A5048504891 @default.
- W4285135621 hasAuthorship W4285135621A5052041167 @default.
- W4285135621 hasAuthorship W4285135621A5066569021 @default.
- W4285135621 hasAuthorship W4285135621A5090647128 @default.