Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285136924> ?p ?o ?g. }
- W4285136924 endingPage "64861" @default.
- W4285136924 startingPage "64850" @default.
- W4285136924 abstract "This paper presents a novel approach, using multi-step predictions, to the adaptive sampling problem for efficient monitoring of environmental spatial phenomena in a mobile sensor network. We employ a Gaussian process to represent the spatial field of interest, which is then used to predict the field at unmeasured locations. The adaptive sampling problem aims to drive the mobile sensors to optimally navigate the environment while the sensors adaptively take measurements of the spatial phenomena at each sampling step. To this end, an optimal sampling criterion based on conditional entropy is proposed, which minimizes the prediction uncertainty of the Gaussian process model. By predicting the measurements the mobile sensors potentially take in a finite horizon of multiple future sampling steps and exploiting the chain rule of the conditional entropy, a multi-step-ahead adaptive sampling optimization problem is formulated. Its objective is to find the optimal sampling paths for the mobile sensors in multiple sampling steps ahead. Robot-robot and robot-obstacle collision avoidance is formulated as mixed-integer constraints. Compared with the single-step-ahead approach typically adopted in the literature, our approach provides better navigation, deployment, and data collection with more informative sensor readings. However, the resulting mixed-integer nonlinear program is highly complex and intractable. We propose to employ the proximal alternating direction method of multipliers to efficiently solve this problem. More importantly, the solution obtained by the proposed algorithm is theoretically guaranteed to converge to a stationary value. The effectiveness of our proposed approach was extensively validated by simulation using a real-world dataset, which showed highly promising results." @default.
- W4285136924 created "2022-07-14" @default.
- W4285136924 creator A5021671983 @default.
- W4285136924 creator A5051920398 @default.
- W4285136924 creator A5065617320 @default.
- W4285136924 date "2022-01-01" @default.
- W4285136924 modified "2023-10-03" @default.
- W4285136924 title "Multistep Predictions for Adaptive Sampling in Mobile Robotic Sensor Networks Using Proximal ADMM" @default.
- W4285136924 cites W1952209694 @default.
- W4285136924 cites W1979211426 @default.
- W4285136924 cites W1988819790 @default.
- W4285136924 cites W1992675343 @default.
- W4285136924 cites W1998406909 @default.
- W4285136924 cites W2021088595 @default.
- W4285136924 cites W2025333932 @default.
- W4285136924 cites W2089108971 @default.
- W4285136924 cites W2092056414 @default.
- W4285136924 cites W2108996251 @default.
- W4285136924 cites W2130017063 @default.
- W4285136924 cites W2208102648 @default.
- W4285136924 cites W2295652899 @default.
- W4285136924 cites W2331024206 @default.
- W4285136924 cites W2344954093 @default.
- W4285136924 cites W2415731567 @default.
- W4285136924 cites W2511341707 @default.
- W4285136924 cites W2543131193 @default.
- W4285136924 cites W2559249882 @default.
- W4285136924 cites W2727746016 @default.
- W4285136924 cites W2728860753 @default.
- W4285136924 cites W2771206515 @default.
- W4285136924 cites W2810174258 @default.
- W4285136924 cites W2891435172 @default.
- W4285136924 cites W2891752675 @default.
- W4285136924 cites W2952302585 @default.
- W4285136924 cites W2962853966 @default.
- W4285136924 cites W2973734321 @default.
- W4285136924 cites W2980725519 @default.
- W4285136924 cites W3044932790 @default.
- W4285136924 cites W3082822446 @default.
- W4285136924 cites W3105393233 @default.
- W4285136924 cites W3105558219 @default.
- W4285136924 cites W3142388339 @default.
- W4285136924 cites W3153471552 @default.
- W4285136924 cites W4205316174 @default.
- W4285136924 cites W2581746390 @default.
- W4285136924 doi "https://doi.org/10.1109/access.2022.3183680" @default.
- W4285136924 hasPublicationYear "2022" @default.
- W4285136924 type Work @default.
- W4285136924 citedByCount "2" @default.
- W4285136924 countsByYear W42851369242023 @default.
- W4285136924 crossrefType "journal-article" @default.
- W4285136924 hasAuthorship W4285136924A5021671983 @default.
- W4285136924 hasAuthorship W4285136924A5051920398 @default.
- W4285136924 hasAuthorship W4285136924A5065617320 @default.
- W4285136924 hasBestOaLocation W42851369241 @default.
- W4285136924 hasConcept C105795698 @default.
- W4285136924 hasConcept C106131492 @default.
- W4285136924 hasConcept C106301342 @default.
- W4285136924 hasConcept C11413529 @default.
- W4285136924 hasConcept C121332964 @default.
- W4285136924 hasConcept C126255220 @default.
- W4285136924 hasConcept C137836250 @default.
- W4285136924 hasConcept C140779682 @default.
- W4285136924 hasConcept C154945302 @default.
- W4285136924 hasConcept C163716315 @default.
- W4285136924 hasConcept C19499675 @default.
- W4285136924 hasConcept C19966478 @default.
- W4285136924 hasConcept C24590314 @default.
- W4285136924 hasConcept C2781395549 @default.
- W4285136924 hasConcept C31258907 @default.
- W4285136924 hasConcept C31972630 @default.
- W4285136924 hasConcept C33923547 @default.
- W4285136924 hasConcept C41008148 @default.
- W4285136924 hasConcept C61326573 @default.
- W4285136924 hasConcept C62520636 @default.
- W4285136924 hasConcept C6683253 @default.
- W4285136924 hasConcept C75782508 @default.
- W4285136924 hasConcept C79403827 @default.
- W4285136924 hasConcept C90509273 @default.
- W4285136924 hasConcept C98036226 @default.
- W4285136924 hasConceptScore W4285136924C105795698 @default.
- W4285136924 hasConceptScore W4285136924C106131492 @default.
- W4285136924 hasConceptScore W4285136924C106301342 @default.
- W4285136924 hasConceptScore W4285136924C11413529 @default.
- W4285136924 hasConceptScore W4285136924C121332964 @default.
- W4285136924 hasConceptScore W4285136924C126255220 @default.
- W4285136924 hasConceptScore W4285136924C137836250 @default.
- W4285136924 hasConceptScore W4285136924C140779682 @default.
- W4285136924 hasConceptScore W4285136924C154945302 @default.
- W4285136924 hasConceptScore W4285136924C163716315 @default.
- W4285136924 hasConceptScore W4285136924C19499675 @default.
- W4285136924 hasConceptScore W4285136924C19966478 @default.
- W4285136924 hasConceptScore W4285136924C24590314 @default.
- W4285136924 hasConceptScore W4285136924C2781395549 @default.
- W4285136924 hasConceptScore W4285136924C31258907 @default.
- W4285136924 hasConceptScore W4285136924C31972630 @default.
- W4285136924 hasConceptScore W4285136924C33923547 @default.
- W4285136924 hasConceptScore W4285136924C41008148 @default.