Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285137649> ?p ?o ?g. }
- W4285137649 endingPage "67246" @default.
- W4285137649 startingPage "67230" @default.
- W4285137649 abstract "Techniques for detecting salient objects mimic human behavior by recognizing the most noticeable parts of images as objects. Salient object detection has attracted many researchers’ attention nowadays for various computer vision and pattern recognition applications. In this paper, a unique approach is proposed based on the global and local saliency detection using wavelet transform and hybridizing it with learning-based saliency detection using a guided filter. First, the input image is subjected to superpixel segmentation to achieve visually uniform regions and to reduce the computational cost. The global and local saliency maps are then generated using global and local features extracted by the wavelet transform of the segmented image, as the wavelet transform gives a multiscale analysis of images in frequency as well as in spatial domain. The learning-based saliency maps are generated using random forest regression which considers the location, color, and textural features of the segmented image. The global and local saliency maps are fused to generate the wavelet-based saliency map which is further hybridized with the saliency map generated using random forest regression. The paper discusses the novel technique for hybridizing wavelet-based and learning-based saliency maps using a guided filter-based attention map generation. Several experiments are conducted on five different saliency datasets containing images with complex backgrounds, multiple objects, and low contrast. To evaluate the efficacy of the proposed method, extensive qualitative and quantitative performance analysis is carried out. Experimental results validate the significant improvement in the detection of salient regions as compared to the state-of-the-art methods." @default.
- W4285137649 created "2022-07-14" @default.
- W4285137649 creator A5037595719 @default.
- W4285137649 creator A5039549706 @default.
- W4285137649 creator A5086527348 @default.
- W4285137649 date "2022-01-01" @default.
- W4285137649 modified "2023-10-14" @default.
- W4285137649 title "Boundary Preserved Salient Object Detection Using Guided Filter Based Hybridization Approach of Transformation and Spatial Domain Analysis" @default.
- W4285137649 cites W1581590495 @default.
- W4285137649 cites W1918837316 @default.
- W4285137649 cites W1924902684 @default.
- W4285137649 cites W1932188298 @default.
- W4285137649 cites W1976526581 @default.
- W4285137649 cites W1978904636 @default.
- W4285137649 cites W1982075130 @default.
- W4285137649 cites W1993939318 @default.
- W4285137649 cites W1996031228 @default.
- W4285137649 cites W2039313011 @default.
- W4285137649 cites W2041719651 @default.
- W4285137649 cites W2064365034 @default.
- W4285137649 cites W2100470808 @default.
- W4285137649 cites W2105454024 @default.
- W4285137649 cites W2118246710 @default.
- W4285137649 cites W2125188192 @default.
- W4285137649 cites W2152233525 @default.
- W4285137649 cites W2161185676 @default.
- W4285137649 cites W2166650627 @default.
- W4285137649 cites W2171378720 @default.
- W4285137649 cites W2294182682 @default.
- W4285137649 cites W2315287060 @default.
- W4285137649 cites W2346506533 @default.
- W4285137649 cites W2486722903 @default.
- W4285137649 cites W2497806559 @default.
- W4285137649 cites W2518770889 @default.
- W4285137649 cites W2588600710 @default.
- W4285137649 cites W2591460290 @default.
- W4285137649 cites W2605929543 @default.
- W4285137649 cites W2617634260 @default.
- W4285137649 cites W2740667773 @default.
- W4285137649 cites W2744876417 @default.
- W4285137649 cites W2762270259 @default.
- W4285137649 cites W2766315367 @default.
- W4285137649 cites W2766439555 @default.
- W4285137649 cites W2782834210 @default.
- W4285137649 cites W2793668851 @default.
- W4285137649 cites W2798791651 @default.
- W4285137649 cites W2798807298 @default.
- W4285137649 cites W2808275385 @default.
- W4285137649 cites W2884494720 @default.
- W4285137649 cites W2895927572 @default.
- W4285137649 cites W2911964244 @default.
- W4285137649 cites W2921653116 @default.
- W4285137649 cites W2947342705 @default.
- W4285137649 cites W2961348656 @default.
- W4285137649 cites W2962741298 @default.
- W4285137649 cites W2963032190 @default.
- W4285137649 cites W2963342032 @default.
- W4285137649 cites W2963529609 @default.
- W4285137649 cites W2963868681 @default.
- W4285137649 cites W2964738399 @default.
- W4285137649 cites W2972722164 @default.
- W4285137649 cites W2981283681 @default.
- W4285137649 cites W2986390834 @default.
- W4285137649 cites W2986825110 @default.
- W4285137649 cites W2987701848 @default.
- W4285137649 cites W2989161706 @default.
- W4285137649 cites W2990984982 @default.
- W4285137649 cites W2991366018 @default.
- W4285137649 cites W3009999622 @default.
- W4285137649 cites W3036997343 @default.
- W4285137649 cites W3044364325 @default.
- W4285137649 cites W3083948783 @default.
- W4285137649 cites W3098389804 @default.
- W4285137649 cites W3104979525 @default.
- W4285137649 cites W3123848367 @default.
- W4285137649 cites W3206309488 @default.
- W4285137649 cites W4225538675 @default.
- W4285137649 cites W4239147634 @default.
- W4285137649 doi "https://doi.org/10.1109/access.2022.3185409" @default.
- W4285137649 hasPublicationYear "2022" @default.
- W4285137649 type Work @default.
- W4285137649 citedByCount "4" @default.
- W4285137649 countsByYear W42851376492022 @default.
- W4285137649 countsByYear W42851376492023 @default.
- W4285137649 crossrefType "journal-article" @default.
- W4285137649 hasAuthorship W4285137649A5037595719 @default.
- W4285137649 hasAuthorship W4285137649A5039549706 @default.
- W4285137649 hasAuthorship W4285137649A5086527348 @default.
- W4285137649 hasBestOaLocation W42851376491 @default.
- W4285137649 hasConcept C104317684 @default.
- W4285137649 hasConcept C106131492 @default.
- W4285137649 hasConcept C153180895 @default.
- W4285137649 hasConcept C154945302 @default.
- W4285137649 hasConcept C169258074 @default.
- W4285137649 hasConcept C185592680 @default.
- W4285137649 hasConcept C196216189 @default.
- W4285137649 hasConcept C204241405 @default.
- W4285137649 hasConcept C2776151529 @default.