Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285139620> ?p ?o ?g. }
- W4285139620 endingPage "106092" @default.
- W4285139620 startingPage "106081" @default.
- W4285139620 abstract "Gastric cancer (GC) is one of the most common cancers in the world. In cancer detection, liquid biopsy, as a noninvasive and rapid method, is growing in importance. Different from traditional liquid biopsy using a single biomarker, this study integrated a variety of blood biochemical indices and established an identification system by means of deep learning under the H2O framework method. Based on data from 2951 samples, 58 routine blood biochemical indices, age and gender were collected as comprehensive indices to establish the identification model. Then, the number of indices was reduced to simplify the model, and 33 indices were utilized to build the final identification tool. A tenfold crossvalidation technique was used to evaluate the performance of the proposed method. The sensitivity, specificity, accuracy, and area under the ROC curve on the cross-validation set were 85.44%, 83.82%, 84.54% and 0.9165, respectively. The identification tool is built free online at http://www.cppdd.cn/GC2. The proposed system provides a new approach to identify GC with advantages of being efficient, noninvasive and economical. The deep learning of the integration of these blood biochemical indices will bring insights into the comprehensive understanding of GC pathology, as well as the prevention, screening, diagnosis, and prognosis of GC." @default.
- W4285139620 created "2022-07-14" @default.
- W4285139620 creator A5034162625 @default.
- W4285139620 creator A5042328954 @default.
- W4285139620 creator A5048636701 @default.
- W4285139620 creator A5052801908 @default.
- W4285139620 creator A5054479691 @default.
- W4285139620 creator A5060862766 @default.
- W4285139620 creator A5066931530 @default.
- W4285139620 creator A5068037519 @default.
- W4285139620 creator A5090917542 @default.
- W4285139620 date "2022-01-01" @default.
- W4285139620 modified "2023-09-27" @default.
- W4285139620 title "Identification Tool for Gastric Cancer Based on Integration of 33 Clinical Available Blood Indices Through Deep Learning" @default.
- W4285139620 cites W1706170269 @default.
- W4285139620 cites W2003019456 @default.
- W4285139620 cites W2014279450 @default.
- W4285139620 cites W2026545210 @default.
- W4285139620 cites W2055471397 @default.
- W4285139620 cites W2058334853 @default.
- W4285139620 cites W2062643452 @default.
- W4285139620 cites W2074681329 @default.
- W4285139620 cites W2076681924 @default.
- W4285139620 cites W2077551377 @default.
- W4285139620 cites W2095727900 @default.
- W4285139620 cites W2115762939 @default.
- W4285139620 cites W2179608879 @default.
- W4285139620 cites W2312814198 @default.
- W4285139620 cites W2328016148 @default.
- W4285139620 cites W2407388530 @default.
- W4285139620 cites W2605548712 @default.
- W4285139620 cites W2607011701 @default.
- W4285139620 cites W2613065455 @default.
- W4285139620 cites W2757326036 @default.
- W4285139620 cites W2757828382 @default.
- W4285139620 cites W2766204235 @default.
- W4285139620 cites W2769536245 @default.
- W4285139620 cites W2772510109 @default.
- W4285139620 cites W2778699610 @default.
- W4285139620 cites W2791223755 @default.
- W4285139620 cites W2793005895 @default.
- W4285139620 cites W2806880263 @default.
- W4285139620 cites W2810743218 @default.
- W4285139620 cites W2886809818 @default.
- W4285139620 cites W2889646458 @default.
- W4285139620 cites W2908145260 @default.
- W4285139620 cites W2909453638 @default.
- W4285139620 cites W2943783129 @default.
- W4285139620 cites W2946595669 @default.
- W4285139620 cites W2951245895 @default.
- W4285139620 cites W2962724926 @default.
- W4285139620 cites W2973186268 @default.
- W4285139620 cites W2989148441 @default.
- W4285139620 cites W2990181404 @default.
- W4285139620 cites W2991470835 @default.
- W4285139620 cites W2996609727 @default.
- W4285139620 cites W3004553235 @default.
- W4285139620 cites W3021301518 @default.
- W4285139620 cites W3028458423 @default.
- W4285139620 cites W3081463112 @default.
- W4285139620 cites W3088187081 @default.
- W4285139620 cites W3088388199 @default.
- W4285139620 cites W3096131146 @default.
- W4285139620 cites W3117063516 @default.
- W4285139620 cites W3128646645 @default.
- W4285139620 cites W3137181536 @default.
- W4285139620 cites W3154448391 @default.
- W4285139620 cites W4211130279 @default.
- W4285139620 doi "https://doi.org/10.1109/access.2022.3172477" @default.
- W4285139620 hasPublicationYear "2022" @default.
- W4285139620 type Work @default.
- W4285139620 citedByCount "0" @default.
- W4285139620 crossrefType "journal-article" @default.
- W4285139620 hasAuthorship W4285139620A5034162625 @default.
- W4285139620 hasAuthorship W4285139620A5042328954 @default.
- W4285139620 hasAuthorship W4285139620A5048636701 @default.
- W4285139620 hasAuthorship W4285139620A5052801908 @default.
- W4285139620 hasAuthorship W4285139620A5054479691 @default.
- W4285139620 hasAuthorship W4285139620A5060862766 @default.
- W4285139620 hasAuthorship W4285139620A5066931530 @default.
- W4285139620 hasAuthorship W4285139620A5068037519 @default.
- W4285139620 hasAuthorship W4285139620A5090917542 @default.
- W4285139620 hasBestOaLocation W42851396201 @default.
- W4285139620 hasConcept C108583219 @default.
- W4285139620 hasConcept C116834253 @default.
- W4285139620 hasConcept C119857082 @default.
- W4285139620 hasConcept C121608353 @default.
- W4285139620 hasConcept C126322002 @default.
- W4285139620 hasConcept C142724271 @default.
- W4285139620 hasConcept C153180895 @default.
- W4285139620 hasConcept C154945302 @default.
- W4285139620 hasConcept C185592680 @default.
- W4285139620 hasConcept C2775934546 @default.
- W4285139620 hasConcept C2779529041 @default.
- W4285139620 hasConcept C2781197716 @default.
- W4285139620 hasConcept C41008148 @default.
- W4285139620 hasConcept C55493867 @default.
- W4285139620 hasConcept C59822182 @default.