Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285140781> ?p ?o ?g. }
- W4285140781 endingPage "57106" @default.
- W4285140781 startingPage "57094" @default.
- W4285140781 abstract "Sharpening filters are used to highlight fine image details, including object edges. However, sharpening filters are very specific to different types of images as they may create undesired edge effects, over-highlight fine details, or emphasize noise. Laplacian, Laplacian of Gaussian, high-boost, unsharp masking filters, and their extended algorithms are among most widely used sharpening spatial filters. This paper introduces a method that integrates anisotropic averaging with the Laplacian kernels for grayscale image sharpening. The proposed methodology is based on the concept of kriging computation in geostatistics for determining optimal interpolation weights in spatial domain. The convolution of kriging and Laplacian kernels is then carried out for image sharpening. Experimental results suggest certain advantages of the proposed linear convolution model for image sharpening over the Laplacian, Laplacian of Gaussian, high-boost, unsharp masking, and anisotropic diffusion methods in terms of the balance of sharpness and natural visualization. Another advantage of the proposed method is that it does not require any input statistical parameters." @default.
- W4285140781 created "2022-07-14" @default.
- W4285140781 creator A5009439842 @default.
- W4285140781 date "2022-01-01" @default.
- W4285140781 modified "2023-10-02" @default.
- W4285140781 title "Kriging-Weighted Laplacian Kernels for Grayscale Image Sharpening" @default.
- W4285140781 cites W1546848803 @default.
- W4285140781 cites W1961487958 @default.
- W4285140781 cites W1972612668 @default.
- W4285140781 cites W1996576458 @default.
- W4285140781 cites W2003370853 @default.
- W4285140781 cites W2013897566 @default.
- W4285140781 cites W2024697317 @default.
- W4285140781 cites W2029061296 @default.
- W4285140781 cites W2057542768 @default.
- W4285140781 cites W2083189242 @default.
- W4285140781 cites W2083610878 @default.
- W4285140781 cites W2118723778 @default.
- W4285140781 cites W2126834633 @default.
- W4285140781 cites W2133047203 @default.
- W4285140781 cites W2133665775 @default.
- W4285140781 cites W2137676365 @default.
- W4285140781 cites W2140762031 @default.
- W4285140781 cites W2150134853 @default.
- W4285140781 cites W2151707108 @default.
- W4285140781 cites W2161790807 @default.
- W4285140781 cites W2201752477 @default.
- W4285140781 cites W2751457520 @default.
- W4285140781 cites W2766889664 @default.
- W4285140781 cites W2791424304 @default.
- W4285140781 cites W2793821978 @default.
- W4285140781 cites W2945517933 @default.
- W4285140781 cites W2963452532 @default.
- W4285140781 cites W2982423295 @default.
- W4285140781 cites W2996798951 @default.
- W4285140781 cites W3024381617 @default.
- W4285140781 cites W3093740779 @default.
- W4285140781 cites W3111445912 @default.
- W4285140781 cites W3140854437 @default.
- W4285140781 cites W3174055538 @default.
- W4285140781 cites W3193434336 @default.
- W4285140781 cites W3196145901 @default.
- W4285140781 cites W3212904132 @default.
- W4285140781 cites W3213459102 @default.
- W4285140781 cites W4298862023 @default.
- W4285140781 cites W4319293043 @default.
- W4285140781 doi "https://doi.org/10.1109/access.2022.3178607" @default.
- W4285140781 hasPublicationYear "2022" @default.
- W4285140781 type Work @default.
- W4285140781 citedByCount "4" @default.
- W4285140781 countsByYear W42851407812023 @default.
- W4285140781 crossrefType "journal-article" @default.
- W4285140781 hasAuthorship W4285140781A5009439842 @default.
- W4285140781 hasBestOaLocation W42851407811 @default.
- W4285140781 hasConcept C11413529 @default.
- W4285140781 hasConcept C115961682 @default.
- W4285140781 hasConcept C119857082 @default.
- W4285140781 hasConcept C134306372 @default.
- W4285140781 hasConcept C153180895 @default.
- W4285140781 hasConcept C154945302 @default.
- W4285140781 hasConcept C160633673 @default.
- W4285140781 hasConcept C165700671 @default.
- W4285140781 hasConcept C203504353 @default.
- W4285140781 hasConcept C2781137444 @default.
- W4285140781 hasConcept C31972630 @default.
- W4285140781 hasConcept C33923547 @default.
- W4285140781 hasConcept C41008148 @default.
- W4285140781 hasConcept C45347329 @default.
- W4285140781 hasConcept C50644808 @default.
- W4285140781 hasConcept C78201319 @default.
- W4285140781 hasConcept C79052406 @default.
- W4285140781 hasConcept C81692654 @default.
- W4285140781 hasConcept C9417928 @default.
- W4285140781 hasConceptScore W4285140781C11413529 @default.
- W4285140781 hasConceptScore W4285140781C115961682 @default.
- W4285140781 hasConceptScore W4285140781C119857082 @default.
- W4285140781 hasConceptScore W4285140781C134306372 @default.
- W4285140781 hasConceptScore W4285140781C153180895 @default.
- W4285140781 hasConceptScore W4285140781C154945302 @default.
- W4285140781 hasConceptScore W4285140781C160633673 @default.
- W4285140781 hasConceptScore W4285140781C165700671 @default.
- W4285140781 hasConceptScore W4285140781C203504353 @default.
- W4285140781 hasConceptScore W4285140781C2781137444 @default.
- W4285140781 hasConceptScore W4285140781C31972630 @default.
- W4285140781 hasConceptScore W4285140781C33923547 @default.
- W4285140781 hasConceptScore W4285140781C41008148 @default.
- W4285140781 hasConceptScore W4285140781C45347329 @default.
- W4285140781 hasConceptScore W4285140781C50644808 @default.
- W4285140781 hasConceptScore W4285140781C78201319 @default.
- W4285140781 hasConceptScore W4285140781C79052406 @default.
- W4285140781 hasConceptScore W4285140781C81692654 @default.
- W4285140781 hasConceptScore W4285140781C9417928 @default.
- W4285140781 hasLocation W42851407811 @default.
- W4285140781 hasOpenAccess W4285140781 @default.
- W4285140781 hasPrimaryLocation W42851407811 @default.
- W4285140781 hasRelatedWork W1602457523 @default.
- W4285140781 hasRelatedWork W2038390631 @default.
- W4285140781 hasRelatedWork W2060518359 @default.