Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285141010> ?p ?o ?g. }
- W4285141010 endingPage "95" @default.
- W4285141010 startingPage "86" @default.
- W4285141010 abstract "Wind energy is one of the most relevant renewable energy. The maintenance of wind turbines is essential to ensure reduced operation and maintenance costs. Supervisory control and data acquisition system acquires large volumes of data from different condition monitoring systems. Artificial intelligence algorithms are employed to obtain reliable information, although redundant information is usually employed decreasing the validity of the results. It is proposed an approach based on data reduction employing data filtering, correlation, principal component analysis to reduce redundant information introduced in neural networks. A real case study is proposed with data from real win turbine is used to develop a case study analyzing one critical alarm. The results obtained prove the validity of the methodology, reducing the initial dataset and increasing the reliability of the neural network." @default.
- W4285141010 created "2022-07-14" @default.
- W4285141010 creator A5024338342 @default.
- W4285141010 creator A5030659050 @default.
- W4285141010 creator A5081496581 @default.
- W4285141010 date "2022-01-01" @default.
- W4285141010 modified "2023-10-17" @default.
- W4285141010 title "A Supervisory Control and Data Acquisition System Filtering Approach for Alarm Management with Deep Learning" @default.
- W4285141010 cites W169221066 @default.
- W4285141010 cites W1999218375 @default.
- W4285141010 cites W2060512336 @default.
- W4285141010 cites W2120674393 @default.
- W4285141010 cites W2120871928 @default.
- W4285141010 cites W2139498473 @default.
- W4285141010 cites W2412298446 @default.
- W4285141010 cites W2544926015 @default.
- W4285141010 cites W2587426528 @default.
- W4285141010 cites W2599121543 @default.
- W4285141010 cites W2740418370 @default.
- W4285141010 cites W2793592543 @default.
- W4285141010 cites W2915097576 @default.
- W4285141010 cites W2944477471 @default.
- W4285141010 cites W2955866086 @default.
- W4285141010 cites W2960049510 @default.
- W4285141010 cites W2962986775 @default.
- W4285141010 cites W2971162753 @default.
- W4285141010 cites W3000155135 @default.
- W4285141010 cites W3009591505 @default.
- W4285141010 cites W3035421035 @default.
- W4285141010 cites W3036498161 @default.
- W4285141010 cites W3088006442 @default.
- W4285141010 cites W3094458337 @default.
- W4285141010 cites W3119327461 @default.
- W4285141010 doi "https://doi.org/10.1007/978-3-030-92905-3_10" @default.
- W4285141010 hasPublicationYear "2022" @default.
- W4285141010 type Work @default.
- W4285141010 citedByCount "0" @default.
- W4285141010 crossrefType "book-chapter" @default.
- W4285141010 hasAuthorship W4285141010A5024338342 @default.
- W4285141010 hasAuthorship W4285141010A5030659050 @default.
- W4285141010 hasAuthorship W4285141010A5081496581 @default.
- W4285141010 hasConcept C111335779 @default.
- W4285141010 hasConcept C113863187 @default.
- W4285141010 hasConcept C119599485 @default.
- W4285141010 hasConcept C121332964 @default.
- W4285141010 hasConcept C124101348 @default.
- W4285141010 hasConcept C127413603 @default.
- W4285141010 hasConcept C146978453 @default.
- W4285141010 hasConcept C153914771 @default.
- W4285141010 hasConcept C154945302 @default.
- W4285141010 hasConcept C163258240 @default.
- W4285141010 hasConcept C200601418 @default.
- W4285141010 hasConcept C2524010 @default.
- W4285141010 hasConcept C27438332 @default.
- W4285141010 hasConcept C2775924081 @default.
- W4285141010 hasConcept C2778449969 @default.
- W4285141010 hasConcept C2779119184 @default.
- W4285141010 hasConcept C33923547 @default.
- W4285141010 hasConcept C41008148 @default.
- W4285141010 hasConcept C43214815 @default.
- W4285141010 hasConcept C50644808 @default.
- W4285141010 hasConcept C62520636 @default.
- W4285141010 hasConcept C78519656 @default.
- W4285141010 hasConcept C78600449 @default.
- W4285141010 hasConceptScore W4285141010C111335779 @default.
- W4285141010 hasConceptScore W4285141010C113863187 @default.
- W4285141010 hasConceptScore W4285141010C119599485 @default.
- W4285141010 hasConceptScore W4285141010C121332964 @default.
- W4285141010 hasConceptScore W4285141010C124101348 @default.
- W4285141010 hasConceptScore W4285141010C127413603 @default.
- W4285141010 hasConceptScore W4285141010C146978453 @default.
- W4285141010 hasConceptScore W4285141010C153914771 @default.
- W4285141010 hasConceptScore W4285141010C154945302 @default.
- W4285141010 hasConceptScore W4285141010C163258240 @default.
- W4285141010 hasConceptScore W4285141010C200601418 @default.
- W4285141010 hasConceptScore W4285141010C2524010 @default.
- W4285141010 hasConceptScore W4285141010C27438332 @default.
- W4285141010 hasConceptScore W4285141010C2775924081 @default.
- W4285141010 hasConceptScore W4285141010C2778449969 @default.
- W4285141010 hasConceptScore W4285141010C2779119184 @default.
- W4285141010 hasConceptScore W4285141010C33923547 @default.
- W4285141010 hasConceptScore W4285141010C41008148 @default.
- W4285141010 hasConceptScore W4285141010C43214815 @default.
- W4285141010 hasConceptScore W4285141010C50644808 @default.
- W4285141010 hasConceptScore W4285141010C62520636 @default.
- W4285141010 hasConceptScore W4285141010C78519656 @default.
- W4285141010 hasConceptScore W4285141010C78600449 @default.
- W4285141010 hasLocation W42851410101 @default.
- W4285141010 hasOpenAccess W4285141010 @default.
- W4285141010 hasPrimaryLocation W42851410101 @default.
- W4285141010 hasRelatedWork W1482055478 @default.
- W4285141010 hasRelatedWork W1514850223 @default.
- W4285141010 hasRelatedWork W1973155708 @default.
- W4285141010 hasRelatedWork W2079987237 @default.
- W4285141010 hasRelatedWork W2908122050 @default.
- W4285141010 hasRelatedWork W3137316933 @default.
- W4285141010 hasRelatedWork W3138052413 @default.
- W4285141010 hasRelatedWork W3138894785 @default.