Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285146193> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4285146193 endingPage "52817" @default.
- W4285146193 startingPage "52804" @default.
- W4285146193 abstract "This paper proposes an improved brain magnetic resonance imaging (MRI) segmentation model by integrating U-SegNet with fire modules and residual convolutions to segment brain tissues in MRI. In the proposed encoder-decoder method, the residual connections and squeeze-expand convolutional layers from the fire module lead to a lighter and more efficient architecture for brain MRI segmentation. The residual unit helps in the smooth training of the deep architecture, and features obtained from residual convolutions exhibit a superior representation of the features in the segmentation network. In addition, the method provides a design with more efficient architecture, fewer network parameters, and better segmentation accuracy for brain MRI. The proposed architecture was evaluated on publicly available open access series of imaging studies (OASIS) and internet brain segmentation repository (IBSR) datasets for brain tissue segmentation. The experimental results showed superior performance compared to other state-of-the-art methods on brain MRI segmentation with a dice similarity coefficient (DSC) score of 0.96 and Jaccard index (JI) of 0.92." @default.
- W4285146193 created "2022-07-14" @default.
- W4285146193 creator A5021629044 @default.
- W4285146193 creator A5030344955 @default.
- W4285146193 creator A5051083488 @default.
- W4285146193 date "2022-01-01" @default.
- W4285146193 modified "2023-09-26" @default.
- W4285146193 title "A Squeeze U-SegNet Architecture Based on Residual Convolution for Brain MRI Segmentation" @default.
- W4285146193 cites W1903029394 @default.
- W4285146193 cites W1941049212 @default.
- W4285146193 cites W1987869189 @default.
- W4285146193 cites W2064675550 @default.
- W4285146193 cites W2103404435 @default.
- W4285146193 cites W2123402141 @default.
- W4285146193 cites W2135011268 @default.
- W4285146193 cites W2150534249 @default.
- W4285146193 cites W2156150815 @default.
- W4285146193 cites W2183341477 @default.
- W4285146193 cites W2194775991 @default.
- W4285146193 cites W2285660444 @default.
- W4285146193 cites W2567599812 @default.
- W4285146193 cites W2618530766 @default.
- W4285146193 cites W2790548600 @default.
- W4285146193 cites W2884436604 @default.
- W4285146193 cites W2919115771 @default.
- W4285146193 cites W2928133111 @default.
- W4285146193 cites W2962835938 @default.
- W4285146193 cites W2964309882 @default.
- W4285146193 cites W3034151505 @default.
- W4285146193 cites W3038521198 @default.
- W4285146193 cites W3095705220 @default.
- W4285146193 cites W3103010481 @default.
- W4285146193 cites W3161134139 @default.
- W4285146193 doi "https://doi.org/10.1109/access.2022.3175188" @default.
- W4285146193 hasPublicationYear "2022" @default.
- W4285146193 type Work @default.
- W4285146193 citedByCount "3" @default.
- W4285146193 countsByYear W42851461932022 @default.
- W4285146193 countsByYear W42851461932023 @default.
- W4285146193 crossrefType "journal-article" @default.
- W4285146193 hasAuthorship W4285146193A5021629044 @default.
- W4285146193 hasAuthorship W4285146193A5030344955 @default.
- W4285146193 hasAuthorship W4285146193A5051083488 @default.
- W4285146193 hasBestOaLocation W42851461931 @default.
- W4285146193 hasConcept C11413529 @default.
- W4285146193 hasConcept C124504099 @default.
- W4285146193 hasConcept C153180895 @default.
- W4285146193 hasConcept C154945302 @default.
- W4285146193 hasConcept C155512373 @default.
- W4285146193 hasConcept C163892561 @default.
- W4285146193 hasConcept C203519979 @default.
- W4285146193 hasConcept C31972630 @default.
- W4285146193 hasConcept C41008148 @default.
- W4285146193 hasConcept C45347329 @default.
- W4285146193 hasConcept C50644808 @default.
- W4285146193 hasConcept C81363708 @default.
- W4285146193 hasConcept C89600930 @default.
- W4285146193 hasConceptScore W4285146193C11413529 @default.
- W4285146193 hasConceptScore W4285146193C124504099 @default.
- W4285146193 hasConceptScore W4285146193C153180895 @default.
- W4285146193 hasConceptScore W4285146193C154945302 @default.
- W4285146193 hasConceptScore W4285146193C155512373 @default.
- W4285146193 hasConceptScore W4285146193C163892561 @default.
- W4285146193 hasConceptScore W4285146193C203519979 @default.
- W4285146193 hasConceptScore W4285146193C31972630 @default.
- W4285146193 hasConceptScore W4285146193C41008148 @default.
- W4285146193 hasConceptScore W4285146193C45347329 @default.
- W4285146193 hasConceptScore W4285146193C50644808 @default.
- W4285146193 hasConceptScore W4285146193C81363708 @default.
- W4285146193 hasConceptScore W4285146193C89600930 @default.
- W4285146193 hasFunder F4320322120 @default.
- W4285146193 hasLocation W42851461931 @default.
- W4285146193 hasLocation W42851461932 @default.
- W4285146193 hasOpenAccess W4285146193 @default.
- W4285146193 hasPrimaryLocation W42851461931 @default.
- W4285146193 hasRelatedWork W2005437358 @default.
- W4285146193 hasRelatedWork W2441762250 @default.
- W4285146193 hasRelatedWork W2517104666 @default.
- W4285146193 hasRelatedWork W2969790209 @default.
- W4285146193 hasRelatedWork W3093926553 @default.
- W4285146193 hasRelatedWork W3118494652 @default.
- W4285146193 hasRelatedWork W4200528772 @default.
- W4285146193 hasRelatedWork W4285146193 @default.
- W4285146193 hasRelatedWork W4287631720 @default.
- W4285146193 hasRelatedWork W4315491877 @default.
- W4285146193 hasVolume "10" @default.
- W4285146193 isParatext "false" @default.
- W4285146193 isRetracted "false" @default.
- W4285146193 workType "article" @default.