Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285146467> ?p ?o ?g. }
- W4285146467 endingPage "1291" @default.
- W4285146467 startingPage "1281" @default.
- W4285146467 abstract "Human–machine interaction requires accurate recognition of human intentions (e.g., via hand gestures). Here, we assessed the cross-day robustness of widely used hand gesture classification techniques applied to high-density surface electromyogram (HD-sEMG) signals (256 channels). Our evaluation covered techniques in each stage of the classification framework: first, 50 temporal-spectral-spatial domain features, second, 15 feature optimization techniques, and third, seven classifiers. Moreover, although HD-sEMG provides sufficient neuromuscular information, some of the channels may present low signal-to-noise ratio and should therefore be treated as outliers. Accordingly, we performed our evaluation with, first, all outlier channels retained, and second, removal of the features corresponding to poor-quality channels and substitution with interpolated values from neighbor channels. The impact of sliding window and data augmentation was also investigated. We examined the results on a 35-gesture classification task using HD-sEMG acquired from 20 subjects on two sessions in separate days. The results showed that interpolation of features from outlier channels significantly improved the performance in most cases. Use of a sliding window and of data augmentation contributed to a higher classification accuracy. For the classification of 11 selected gestures of common daily use, the support vector machine classifier achieved the highest classification accuracy of 91.9% in a cross-day validation protocol using an optimal combination of 13 features (each extracted from sliding windows), feature optimization by linear discriminant analysis, and data augmentation. Our work can serve as a technique-screening tool on cross-day applications of human–machine interactions." @default.
- W4285146467 created "2022-07-14" @default.
- W4285146467 creator A5009024629 @default.
- W4285146467 creator A5009324842 @default.
- W4285146467 creator A5015221002 @default.
- W4285146467 creator A5017541508 @default.
- W4285146467 creator A5065669889 @default.
- W4285146467 creator A5076568602 @default.
- W4285146467 creator A5083490677 @default.
- W4285146467 creator A5089723017 @default.
- W4285146467 date "2022-12-01" @default.
- W4285146467 modified "2023-09-28" @default.
- W4285146467 title "Optimization of HD-sEMG-Based Cross-Day Hand Gesture Classification by Optimal Feature Extraction and Data Augmentation" @default.
- W4285146467 cites W140777655 @default.
- W4285146467 cites W1991342507 @default.
- W4285146467 cites W2004874112 @default.
- W4285146467 cites W2014784356 @default.
- W4285146467 cites W2020814153 @default.
- W4285146467 cites W2027328506 @default.
- W4285146467 cites W2044628302 @default.
- W4285146467 cites W2097562570 @default.
- W4285146467 cites W2119008936 @default.
- W4285146467 cites W2120422653 @default.
- W4285146467 cites W2121410881 @default.
- W4285146467 cites W2122111042 @default.
- W4285146467 cites W2125283600 @default.
- W4285146467 cites W2125593342 @default.
- W4285146467 cites W2134408600 @default.
- W4285146467 cites W2141200867 @default.
- W4285146467 cites W2143426320 @default.
- W4285146467 cites W2154053567 @default.
- W4285146467 cites W2192203593 @default.
- W4285146467 cites W2256782633 @default.
- W4285146467 cites W2563508321 @default.
- W4285146467 cites W2589747988 @default.
- W4285146467 cites W2753823607 @default.
- W4285146467 cites W2770348256 @default.
- W4285146467 cites W2887983676 @default.
- W4285146467 cites W2962755847 @default.
- W4285146467 cites W2970602317 @default.
- W4285146467 cites W2987247708 @default.
- W4285146467 cites W2990979217 @default.
- W4285146467 cites W2992031722 @default.
- W4285146467 cites W2997304337 @default.
- W4285146467 cites W3034359740 @default.
- W4285146467 cites W3035181526 @default.
- W4285146467 cites W3081631673 @default.
- W4285146467 cites W3091371329 @default.
- W4285146467 cites W3093217586 @default.
- W4285146467 cites W3126122061 @default.
- W4285146467 cites W3158705359 @default.
- W4285146467 cites W3162159851 @default.
- W4285146467 doi "https://doi.org/10.1109/thms.2022.3175408" @default.
- W4285146467 hasPublicationYear "2022" @default.
- W4285146467 type Work @default.
- W4285146467 citedByCount "6" @default.
- W4285146467 countsByYear W42851464672022 @default.
- W4285146467 countsByYear W42851464672023 @default.
- W4285146467 crossrefType "journal-article" @default.
- W4285146467 hasAuthorship W4285146467A5009024629 @default.
- W4285146467 hasAuthorship W4285146467A5009324842 @default.
- W4285146467 hasAuthorship W4285146467A5015221002 @default.
- W4285146467 hasAuthorship W4285146467A5017541508 @default.
- W4285146467 hasAuthorship W4285146467A5065669889 @default.
- W4285146467 hasAuthorship W4285146467A5076568602 @default.
- W4285146467 hasAuthorship W4285146467A5083490677 @default.
- W4285146467 hasAuthorship W4285146467A5089723017 @default.
- W4285146467 hasConcept C102392041 @default.
- W4285146467 hasConcept C104317684 @default.
- W4285146467 hasConcept C111919701 @default.
- W4285146467 hasConcept C12267149 @default.
- W4285146467 hasConcept C153180895 @default.
- W4285146467 hasConcept C154945302 @default.
- W4285146467 hasConcept C159437735 @default.
- W4285146467 hasConcept C185592680 @default.
- W4285146467 hasConcept C207347870 @default.
- W4285146467 hasConcept C27181475 @default.
- W4285146467 hasConcept C2778751112 @default.
- W4285146467 hasConcept C28490314 @default.
- W4285146467 hasConcept C41008148 @default.
- W4285146467 hasConcept C52622490 @default.
- W4285146467 hasConcept C55493867 @default.
- W4285146467 hasConcept C63479239 @default.
- W4285146467 hasConcept C69738355 @default.
- W4285146467 hasConcept C79337645 @default.
- W4285146467 hasConcept C95623464 @default.
- W4285146467 hasConceptScore W4285146467C102392041 @default.
- W4285146467 hasConceptScore W4285146467C104317684 @default.
- W4285146467 hasConceptScore W4285146467C111919701 @default.
- W4285146467 hasConceptScore W4285146467C12267149 @default.
- W4285146467 hasConceptScore W4285146467C153180895 @default.
- W4285146467 hasConceptScore W4285146467C154945302 @default.
- W4285146467 hasConceptScore W4285146467C159437735 @default.
- W4285146467 hasConceptScore W4285146467C185592680 @default.
- W4285146467 hasConceptScore W4285146467C207347870 @default.
- W4285146467 hasConceptScore W4285146467C27181475 @default.
- W4285146467 hasConceptScore W4285146467C2778751112 @default.
- W4285146467 hasConceptScore W4285146467C28490314 @default.