Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285148850> ?p ?o ?g. }
- W4285148850 endingPage "568" @default.
- W4285148850 startingPage "553" @default.
- W4285148850 abstract "Actual engineering systems will be inevitably affected by uncertain factors. Thus, the Reliability-Based Multidisciplinary Design Optimization (RBMDO) has become a hotspot for recent research and application in complex engineering system design. The Second-Order/First-Order Mean-Value Saddlepoint Approximate (SOMVSA/FOMVSA) are two popular reliability analysis strategies that are widely used in RBMDO. However, the SOMVSA method can only be used efficiently when the distribution of input variables is Gaussian distribution, which significantly limits its application. In this study, the Gaussian Mixture Model-based Second-Order Mean-Value Saddlepoint Approximation (GMM-SOMVSA) is introduced to tackle above problem. It is integrated with the Collaborative Optimization (CO) method to solve RBMDO problems. Furthermore, the formula and procedure of RBMDO using GMM-SOMVSA-Based CO(GMM-SOMVSA-CO) are proposed. Finally, an engineering example is given to show the application of the GMM-SOMVSA-CO method." @default.
- W4285148850 created "2022-07-14" @default.
- W4285148850 creator A5006812383 @default.
- W4285148850 creator A5011598096 @default.
- W4285148850 creator A5050471588 @default.
- W4285148850 creator A5062006504 @default.
- W4285148850 creator A5069284928 @default.
- W4285148850 creator A5076020601 @default.
- W4285148850 date "2022-01-01" @default.
- W4285148850 modified "2023-10-16" @default.
- W4285148850 title "RBMDO Using Gaussian Mixture Model-Based Second-Order Mean-Value Saddlepoint Approximation" @default.
- W4285148850 cites W2003363885 @default.
- W4285148850 cites W2479868876 @default.
- W4285148850 cites W2514273902 @default.
- W4285148850 cites W2588549531 @default.
- W4285148850 cites W2593388048 @default.
- W4285148850 cites W2753338312 @default.
- W4285148850 cites W2769265492 @default.
- W4285148850 cites W2885853290 @default.
- W4285148850 cites W2889405224 @default.
- W4285148850 cites W2890406236 @default.
- W4285148850 cites W2911409541 @default.
- W4285148850 cites W2913617953 @default.
- W4285148850 cites W2949015607 @default.
- W4285148850 cites W2950751842 @default.
- W4285148850 cites W2956303386 @default.
- W4285148850 cites W2966205600 @default.
- W4285148850 cites W2966734977 @default.
- W4285148850 cites W2971558229 @default.
- W4285148850 cites W2973468741 @default.
- W4285148850 cites W2997734707 @default.
- W4285148850 cites W2999355043 @default.
- W4285148850 cites W3005398182 @default.
- W4285148850 cites W3025605929 @default.
- W4285148850 cites W3034878177 @default.
- W4285148850 cites W3037246322 @default.
- W4285148850 cites W3096737319 @default.
- W4285148850 cites W3097342483 @default.
- W4285148850 cites W3128175679 @default.
- W4285148850 cites W3130274749 @default.
- W4285148850 cites W3142536209 @default.
- W4285148850 cites W3157821270 @default.
- W4285148850 cites W3167675159 @default.
- W4285148850 cites W3184190941 @default.
- W4285148850 cites W3188340548 @default.
- W4285148850 cites W3201831860 @default.
- W4285148850 cites W3202068784 @default.
- W4285148850 cites W3206122317 @default.
- W4285148850 cites W3209199687 @default.
- W4285148850 cites W3209537662 @default.
- W4285148850 cites W3216371270 @default.
- W4285148850 cites W4205353506 @default.
- W4285148850 cites W4205662564 @default.
- W4285148850 cites W4206009461 @default.
- W4285148850 cites W4213262105 @default.
- W4285148850 cites W4236444166 @default.
- W4285148850 cites W4250685322 @default.
- W4285148850 cites W4252352694 @default.
- W4285148850 doi "https://doi.org/10.32604/cmes.2022.020756" @default.
- W4285148850 hasPublicationYear "2022" @default.
- W4285148850 type Work @default.
- W4285148850 citedByCount "17" @default.
- W4285148850 countsByYear W42851488502022 @default.
- W4285148850 countsByYear W42851488502023 @default.
- W4285148850 crossrefType "journal-article" @default.
- W4285148850 hasAuthorship W4285148850A5006812383 @default.
- W4285148850 hasAuthorship W4285148850A5011598096 @default.
- W4285148850 hasAuthorship W4285148850A5050471588 @default.
- W4285148850 hasAuthorship W4285148850A5062006504 @default.
- W4285148850 hasAuthorship W4285148850A5069284928 @default.
- W4285148850 hasAuthorship W4285148850A5076020601 @default.
- W4285148850 hasBestOaLocation W42851488501 @default.
- W4285148850 hasConcept C105795698 @default.
- W4285148850 hasConcept C121332964 @default.
- W4285148850 hasConcept C126255220 @default.
- W4285148850 hasConcept C163258240 @default.
- W4285148850 hasConcept C163716315 @default.
- W4285148850 hasConcept C28826006 @default.
- W4285148850 hasConcept C33923547 @default.
- W4285148850 hasConcept C41008148 @default.
- W4285148850 hasConcept C43214815 @default.
- W4285148850 hasConcept C61224824 @default.
- W4285148850 hasConcept C62520636 @default.
- W4285148850 hasConceptScore W4285148850C105795698 @default.
- W4285148850 hasConceptScore W4285148850C121332964 @default.
- W4285148850 hasConceptScore W4285148850C126255220 @default.
- W4285148850 hasConceptScore W4285148850C163258240 @default.
- W4285148850 hasConceptScore W4285148850C163716315 @default.
- W4285148850 hasConceptScore W4285148850C28826006 @default.
- W4285148850 hasConceptScore W4285148850C33923547 @default.
- W4285148850 hasConceptScore W4285148850C41008148 @default.
- W4285148850 hasConceptScore W4285148850C43214815 @default.
- W4285148850 hasConceptScore W4285148850C61224824 @default.
- W4285148850 hasConceptScore W4285148850C62520636 @default.
- W4285148850 hasIssue "2" @default.
- W4285148850 hasLocation W42851488501 @default.
- W4285148850 hasOpenAccess W4285148850 @default.
- W4285148850 hasPrimaryLocation W42851488501 @default.