Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285156299> ?p ?o ?g. }
- W4285156299 endingPage "691" @default.
- W4285156299 startingPage "678" @default.
- W4285156299 abstract "Structural health monitoring (SHM) is of significant importance in the operation of engineering systems to ensure the durability and reliability. In this article, we introduce a Bayesian optimization method using a multioutput Gaussian process to solve the structural fault diagnosis problem. This method utilizes a high fidelity finite element model (FE) of the structure and the impedance/admittance measurements from the structure to identify the location and severity of the damage. The method improves the accuracy of the damage diagnosis by adopting a multioutput Gaussian process as the surrogate model for the full FE model and Thompson sampling approach is used to guide the search for the structural damage in the Bayesian optimization. The detailed algorithms are presented, and the convergence analysis of the method is conducted. We apply our proposed method on simulated synthetic functions and it achieves better performance and higher convergence speed than the traditional mixed input optimization methods. We then apply our method on a real world structural damage identification problem using measured piezoelectric admittance data and illustrate the effectiveness of the proposed method." @default.
- W4285156299 created "2022-07-14" @default.
- W4285156299 creator A5000499123 @default.
- W4285156299 creator A5012594784 @default.
- W4285156299 creator A5039290222 @default.
- W4285156299 creator A5087190304 @default.
- W4285156299 creator A5087819768 @default.
- W4285156299 date "2023-06-01" @default.
- W4285156299 modified "2023-10-15" @default.
- W4285156299 title "Mixed-Input Bayesian Optimization Method for Structural Damage Diagnosis" @default.
- W4285156299 cites W1581422098 @default.
- W4285156299 cites W1964490787 @default.
- W4285156299 cites W1967734163 @default.
- W4285156299 cites W1974937407 @default.
- W4285156299 cites W2004136766 @default.
- W4285156299 cites W2016028169 @default.
- W4285156299 cites W2026757872 @default.
- W4285156299 cites W2030113781 @default.
- W4285156299 cites W2040932457 @default.
- W4285156299 cites W2053967096 @default.
- W4285156299 cites W2054944014 @default.
- W4285156299 cites W2085137213 @default.
- W4285156299 cites W2094009285 @default.
- W4285156299 cites W2113741278 @default.
- W4285156299 cites W2149721706 @default.
- W4285156299 cites W2156614992 @default.
- W4285156299 cites W2166566250 @default.
- W4285156299 cites W2192203593 @default.
- W4285156299 cites W2401855953 @default.
- W4285156299 cites W2577761826 @default.
- W4285156299 cites W2585874231 @default.
- W4285156299 cites W2591055632 @default.
- W4285156299 cites W2732547613 @default.
- W4285156299 cites W2735706443 @default.
- W4285156299 cites W2756837310 @default.
- W4285156299 cites W2773031903 @default.
- W4285156299 cites W2781953303 @default.
- W4285156299 cites W2801712269 @default.
- W4285156299 cites W2950929549 @default.
- W4285156299 cites W2961523456 @default.
- W4285156299 cites W2998410485 @default.
- W4285156299 cites W3004017446 @default.
- W4285156299 cites W3024753947 @default.
- W4285156299 cites W3035069654 @default.
- W4285156299 cites W3105216179 @default.
- W4285156299 cites W3119689123 @default.
- W4285156299 cites W3184267170 @default.
- W4285156299 cites W3201680193 @default.
- W4285156299 cites W3214992126 @default.
- W4285156299 cites W4234228486 @default.
- W4285156299 cites W4238746485 @default.
- W4285156299 doi "https://doi.org/10.1109/tr.2022.3179602" @default.
- W4285156299 hasPublicationYear "2023" @default.
- W4285156299 type Work @default.
- W4285156299 citedByCount "1" @default.
- W4285156299 countsByYear W42851562992023 @default.
- W4285156299 crossrefType "journal-article" @default.
- W4285156299 hasAuthorship W4285156299A5000499123 @default.
- W4285156299 hasAuthorship W4285156299A5012594784 @default.
- W4285156299 hasAuthorship W4285156299A5039290222 @default.
- W4285156299 hasAuthorship W4285156299A5087190304 @default.
- W4285156299 hasAuthorship W4285156299A5087819768 @default.
- W4285156299 hasConcept C107673813 @default.
- W4285156299 hasConcept C108811297 @default.
- W4285156299 hasConcept C11413529 @default.
- W4285156299 hasConcept C119599485 @default.
- W4285156299 hasConcept C119857082 @default.
- W4285156299 hasConcept C121332964 @default.
- W4285156299 hasConcept C126255220 @default.
- W4285156299 hasConcept C127413603 @default.
- W4285156299 hasConcept C131675550 @default.
- W4285156299 hasConcept C135628077 @default.
- W4285156299 hasConcept C137836250 @default.
- W4285156299 hasConcept C154945302 @default.
- W4285156299 hasConcept C162324750 @default.
- W4285156299 hasConcept C163258240 @default.
- W4285156299 hasConcept C163716315 @default.
- W4285156299 hasConcept C17829176 @default.
- W4285156299 hasConcept C2776247918 @default.
- W4285156299 hasConcept C2777303404 @default.
- W4285156299 hasConcept C2778049539 @default.
- W4285156299 hasConcept C33923547 @default.
- W4285156299 hasConcept C41008148 @default.
- W4285156299 hasConcept C43214815 @default.
- W4285156299 hasConcept C50522688 @default.
- W4285156299 hasConcept C61326573 @default.
- W4285156299 hasConcept C62520636 @default.
- W4285156299 hasConcept C66938386 @default.
- W4285156299 hasConcept C81692654 @default.
- W4285156299 hasConceptScore W4285156299C107673813 @default.
- W4285156299 hasConceptScore W4285156299C108811297 @default.
- W4285156299 hasConceptScore W4285156299C11413529 @default.
- W4285156299 hasConceptScore W4285156299C119599485 @default.
- W4285156299 hasConceptScore W4285156299C119857082 @default.
- W4285156299 hasConceptScore W4285156299C121332964 @default.
- W4285156299 hasConceptScore W4285156299C126255220 @default.
- W4285156299 hasConceptScore W4285156299C127413603 @default.
- W4285156299 hasConceptScore W4285156299C131675550 @default.