Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285156625> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4285156625 endingPage "395" @default.
- W4285156625 startingPage "390" @default.
- W4285156625 abstract "Owing to the advances of data sensing and collecting technologies, more production data of additive manufacturing (AM) systems is available and advanced data analytics techniques are increasingly employed for improving energy management. Current supervised learning-based analytical methods, however, typically require extracting and learning valuable information from a significant amount of data during training. It is difficult to make a trade-off between latency and computing resources to implement the analytical models. As such, this paper developed a method utilizing the knowledge distillation (KD) technique for predicting AM energy consumption based on product geometry information to reduce computational burdens while simultaneously retaining model performance. Through a teacher-student architecture, layer-by-layer images of products and energy consumption datasets are used to train a teacher model from which the knowledge is extracted and used to build a student model to predict energy consumption. A case study was conducted to demonstrate the feasibility and effectiveness of the proposed approach using real-world data from a selective laser sintering (SLS) system. Comparisons between distilled and independently trained student models were made in terms of the root mean square error (RMSE) and training time. The distilled student model performed better (14.3947KWh/kg) and required a shorter training time (34s) than the complex teacher model." @default.
- W4285156625 created "2022-07-14" @default.
- W4285156625 creator A5034039634 @default.
- W4285156625 creator A5060002817 @default.
- W4285156625 creator A5062765063 @default.
- W4285156625 creator A5082573421 @default.
- W4285156625 creator A5089669072 @default.
- W4285156625 date "2022-01-01" @default.
- W4285156625 modified "2023-10-05" @default.
- W4285156625 title "Knowledge Distillation for Energy Consumption Prediction in Additive Manufacturing" @default.
- W4285156625 cites W2080887584 @default.
- W4285156625 cites W2210858887 @default.
- W4285156625 cites W2611535959 @default.
- W4285156625 cites W2726468519 @default.
- W4285156625 cites W2787884921 @default.
- W4285156625 cites W2801962755 @default.
- W4285156625 cites W2899369349 @default.
- W4285156625 cites W2922220370 @default.
- W4285156625 cites W2943862223 @default.
- W4285156625 cites W2994968894 @default.
- W4285156625 cites W3008290988 @default.
- W4285156625 cites W3034368386 @default.
- W4285156625 cites W3045571868 @default.
- W4285156625 doi "https://doi.org/10.1016/j.ifacol.2022.04.225" @default.
- W4285156625 hasPublicationYear "2022" @default.
- W4285156625 type Work @default.
- W4285156625 citedByCount "2" @default.
- W4285156625 countsByYear W42851566252023 @default.
- W4285156625 crossrefType "journal-article" @default.
- W4285156625 hasAuthorship W4285156625A5034039634 @default.
- W4285156625 hasAuthorship W4285156625A5060002817 @default.
- W4285156625 hasAuthorship W4285156625A5062765063 @default.
- W4285156625 hasAuthorship W4285156625A5082573421 @default.
- W4285156625 hasAuthorship W4285156625A5089669072 @default.
- W4285156625 hasBestOaLocation W42851566251 @default.
- W4285156625 hasConcept C105795698 @default.
- W4285156625 hasConcept C119599485 @default.
- W4285156625 hasConcept C119857082 @default.
- W4285156625 hasConcept C124101348 @default.
- W4285156625 hasConcept C127413603 @default.
- W4285156625 hasConcept C139945424 @default.
- W4285156625 hasConcept C154945302 @default.
- W4285156625 hasConcept C178790620 @default.
- W4285156625 hasConcept C185592680 @default.
- W4285156625 hasConcept C204030448 @default.
- W4285156625 hasConcept C2780165032 @default.
- W4285156625 hasConcept C33923547 @default.
- W4285156625 hasConcept C41008148 @default.
- W4285156625 hasConceptScore W4285156625C105795698 @default.
- W4285156625 hasConceptScore W4285156625C119599485 @default.
- W4285156625 hasConceptScore W4285156625C119857082 @default.
- W4285156625 hasConceptScore W4285156625C124101348 @default.
- W4285156625 hasConceptScore W4285156625C127413603 @default.
- W4285156625 hasConceptScore W4285156625C139945424 @default.
- W4285156625 hasConceptScore W4285156625C154945302 @default.
- W4285156625 hasConceptScore W4285156625C178790620 @default.
- W4285156625 hasConceptScore W4285156625C185592680 @default.
- W4285156625 hasConceptScore W4285156625C204030448 @default.
- W4285156625 hasConceptScore W4285156625C2780165032 @default.
- W4285156625 hasConceptScore W4285156625C33923547 @default.
- W4285156625 hasConceptScore W4285156625C41008148 @default.
- W4285156625 hasIssue "2" @default.
- W4285156625 hasLocation W42851566251 @default.
- W4285156625 hasLocation W42851566252 @default.
- W4285156625 hasOpenAccess W4285156625 @default.
- W4285156625 hasPrimaryLocation W42851566251 @default.
- W4285156625 hasRelatedWork W2961085424 @default.
- W4285156625 hasRelatedWork W2995227436 @default.
- W4285156625 hasRelatedWork W3046775127 @default.
- W4285156625 hasRelatedWork W3170094116 @default.
- W4285156625 hasRelatedWork W4205958290 @default.
- W4285156625 hasRelatedWork W4285260836 @default.
- W4285156625 hasRelatedWork W4286629047 @default.
- W4285156625 hasRelatedWork W4306321456 @default.
- W4285156625 hasRelatedWork W4306674287 @default.
- W4285156625 hasRelatedWork W4224009465 @default.
- W4285156625 hasVolume "55" @default.
- W4285156625 isParatext "false" @default.
- W4285156625 isRetracted "false" @default.
- W4285156625 workType "article" @default.