Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285158933> ?p ?o ?g. }
- W4285158933 endingPage "4497" @default.
- W4285158933 startingPage "4482" @default.
- W4285158933 abstract "Intelligent reflecting surface (IRS) is a promising new technology that is able to create a favorable wireless signal propagation environment by collaboratively reconfiguring the passive reflecting elements yet with low hardware and energy cost. In IRS-aided wireless communication systems, channel modeling is a fundamental task for communication algorithm design and performance optimization, which however is also very challenging since in-depth domain knowledge and technical expertise in radio signal propagations are required, especially for modeling the high-dimensional cascaded base station (BS)-IRS and IRS-user channels (also referred to as the reflected channels). In this paper, we propose a model-driven generative adversarial network (GAN)-based channel modeling framework to autonomously learn the reflected channel distribution, without complex theoretical analysis or data processing. The designed GAN (also named as IRS-GAN) is trained to reach the Nash equilibrium of a minimax game between a generative model and a discriminative model. For the single-user case, we propose to incorporate the special structure of the reflected channels into the design of the generative model. While for the multiuser case, we extend the IRS-GAN and present a multiuser IRS-GAN (abbreviated as IRS-GAN-M), where the distributions of the reflected channels associated with different users are learned simultaneously with reduced number of network parameters (as compared to the naive scheme that assigns a dedicated IRS-GAN for each user). Moreover, theoretical analysis is presented to prove that the minimax game in the IRS-GAN-M framework has a global optimum if the generative and discriminative models are given with enough capacity. Simulation results are presented to validate the effectiveness of the proposed IRS-GAN framework." @default.
- W4285158933 created "2022-07-14" @default.
- W4285158933 creator A5020537375 @default.
- W4285158933 creator A5058478591 @default.
- W4285158933 date "2022-07-01" @default.
- W4285158933 modified "2023-09-27" @default.
- W4285158933 title "Channel Distribution Learning: Model-Driven GAN-Based Channel Modeling for IRS-Aided Wireless Communication" @default.
- W4285158933 cites W1513873506 @default.
- W4285158933 cites W2086412585 @default.
- W4285158933 cites W2104668009 @default.
- W4285158933 cites W2117125933 @default.
- W4285158933 cites W2127401968 @default.
- W4285158933 cites W2770358530 @default.
- W4285158933 cites W2792088772 @default.
- W4285158933 cites W2794344156 @default.
- W4285158933 cites W2888108833 @default.
- W4285158933 cites W2900270078 @default.
- W4285158933 cites W2921104505 @default.
- W4285158933 cites W2945858715 @default.
- W4285158933 cites W2948226226 @default.
- W4285158933 cites W2950077417 @default.
- W4285158933 cites W2950863887 @default.
- W4285158933 cites W2963355537 @default.
- W4285158933 cites W2964121960 @default.
- W4285158933 cites W2964198392 @default.
- W4285158933 cites W2964324349 @default.
- W4285158933 cites W2968810373 @default.
- W4285158933 cites W2969424089 @default.
- W4285158933 cites W2990747873 @default.
- W4285158933 cites W3005476696 @default.
- W4285158933 cites W3005526854 @default.
- W4285158933 cites W3013719647 @default.
- W4285158933 cites W3039402952 @default.
- W4285158933 cites W3088226458 @default.
- W4285158933 cites W3100218246 @default.
- W4285158933 cites W3102375613 @default.
- W4285158933 cites W3107035074 @default.
- W4285158933 cites W3115103619 @default.
- W4285158933 cites W3120117232 @default.
- W4285158933 cites W3129486236 @default.
- W4285158933 cites W3137708979 @default.
- W4285158933 cites W3154292415 @default.
- W4285158933 cites W3203789000 @default.
- W4285158933 cites W3204345069 @default.
- W4285158933 cites W4226029525 @default.
- W4285158933 cites W4233762729 @default.
- W4285158933 doi "https://doi.org/10.1109/tcomm.2022.3176316" @default.
- W4285158933 hasPublicationYear "2022" @default.
- W4285158933 type Work @default.
- W4285158933 citedByCount "4" @default.
- W4285158933 countsByYear W42851589332023 @default.
- W4285158933 crossrefType "journal-article" @default.
- W4285158933 hasAuthorship W4285158933A5020537375 @default.
- W4285158933 hasAuthorship W4285158933A5058478591 @default.
- W4285158933 hasConcept C108037233 @default.
- W4285158933 hasConcept C126255220 @default.
- W4285158933 hasConcept C127162648 @default.
- W4285158933 hasConcept C127413603 @default.
- W4285158933 hasConcept C149728462 @default.
- W4285158933 hasConcept C154945302 @default.
- W4285158933 hasConcept C167966045 @default.
- W4285158933 hasConcept C24326235 @default.
- W4285158933 hasConcept C31258907 @default.
- W4285158933 hasConcept C33923547 @default.
- W4285158933 hasConcept C39890363 @default.
- W4285158933 hasConcept C41008148 @default.
- W4285158933 hasConcept C555944384 @default.
- W4285158933 hasConcept C68649174 @default.
- W4285158933 hasConcept C76155785 @default.
- W4285158933 hasConcept C81978471 @default.
- W4285158933 hasConcept C97931131 @default.
- W4285158933 hasConceptScore W4285158933C108037233 @default.
- W4285158933 hasConceptScore W4285158933C126255220 @default.
- W4285158933 hasConceptScore W4285158933C127162648 @default.
- W4285158933 hasConceptScore W4285158933C127413603 @default.
- W4285158933 hasConceptScore W4285158933C149728462 @default.
- W4285158933 hasConceptScore W4285158933C154945302 @default.
- W4285158933 hasConceptScore W4285158933C167966045 @default.
- W4285158933 hasConceptScore W4285158933C24326235 @default.
- W4285158933 hasConceptScore W4285158933C31258907 @default.
- W4285158933 hasConceptScore W4285158933C33923547 @default.
- W4285158933 hasConceptScore W4285158933C39890363 @default.
- W4285158933 hasConceptScore W4285158933C41008148 @default.
- W4285158933 hasConceptScore W4285158933C555944384 @default.
- W4285158933 hasConceptScore W4285158933C68649174 @default.
- W4285158933 hasConceptScore W4285158933C76155785 @default.
- W4285158933 hasConceptScore W4285158933C81978471 @default.
- W4285158933 hasConceptScore W4285158933C97931131 @default.
- W4285158933 hasFunder F4320321001 @default.
- W4285158933 hasFunder F4320335777 @default.
- W4285158933 hasFunder F4320338464 @default.
- W4285158933 hasIssue "7" @default.
- W4285158933 hasLocation W42851589331 @default.
- W4285158933 hasOpenAccess W4285158933 @default.
- W4285158933 hasPrimaryLocation W42851589331 @default.
- W4285158933 hasRelatedWork W1484392862 @default.
- W4285158933 hasRelatedWork W1551005744 @default.
- W4285158933 hasRelatedWork W1977325797 @default.