Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285166265> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4285166265 endingPage "580" @default.
- W4285166265 startingPage "571" @default.
- W4285166265 abstract "Human–robot interaction (HRI) and human–robot collaboration (HRC) has become more important as the industries are stepping towards the phase of digitalization and Industry 4.0. Indeed, the emphasis is often placed on the safety of the physical well-being of the human workers. To safeguard the human operators from being hurt by the robots or collaborative robots (cobots), a traditional method is to isolate the robots from the human workers by means of fences and sensors. However, the deployment of deep learning models is unknown and shown to be non-trivial in downstream tasks such as image classification and object detection. The present study aimed to exploit the effectiveness of object detection models, particularly EfficientDet models via a transfer learning approach—fine-tuning. A total of 1463 images were obtained from the surveillance cameras from TT Vision Holdings Berhad and split into training, validation, and test by a ratio of 70:20:10. The training images were further augmented using horizontal flip and scale jittering techniques to increase the total training images up to 3072 images. As an outcome, the result revealed that the EfficientDet-D2 fine-tuned model achieved a test AP of 81.70% with an inference speed of 97.06 ms on Tesla T4 while the EfficientDet-D0 fine-tuned model attained a test AP of 69.30% with an inference speed of 30.24 ms on Tesla T4. In comparison between the EfficientDet-D0 fine-tuned model and EfficientDet-D2 fine-tuned model, the performance improved in terms of AP with the inference speed as the trade-off. The research has shown that it is feasible to detect the presence of human workers and can possibly serve as the visual perception of the robot with regards to human presence detection. Last but not least, the present work proved the applicability of transfer learning methods in human presence detection, specifically fine-tuned object detection models." @default.
- W4285166265 created "2022-07-14" @default.
- W4285166265 creator A5011996408 @default.
- W4285166265 creator A5021226854 @default.
- W4285166265 creator A5038352672 @default.
- W4285166265 creator A5048854087 @default.
- W4285166265 creator A5071882368 @default.
- W4285166265 creator A5085255934 @default.
- W4285166265 date "2022-01-01" @default.
- W4285166265 modified "2023-09-23" @default.
- W4285166265 title "Vision-Based Human Presence Detection by Means of Transfer Learning Approach" @default.
- W4285166265 cites W1861492603 @default.
- W4285166265 cites W2031489346 @default.
- W4285166265 cites W2557728737 @default.
- W4285166265 cites W2561340204 @default.
- W4285166265 cites W2910081881 @default.
- W4285166265 cites W2921236910 @default.
- W4285166265 cites W2966649515 @default.
- W4285166265 cites W2993247505 @default.
- W4285166265 cites W3016969588 @default.
- W4285166265 cites W3034971973 @default.
- W4285166265 cites W3041133507 @default.
- W4285166265 cites W3083244126 @default.
- W4285166265 cites W3106250896 @default.
- W4285166265 cites W3112511644 @default.
- W4285166265 doi "https://doi.org/10.1007/978-981-19-2095-0_49" @default.
- W4285166265 hasPublicationYear "2022" @default.
- W4285166265 type Work @default.
- W4285166265 citedByCount "0" @default.
- W4285166265 crossrefType "book-chapter" @default.
- W4285166265 hasAuthorship W4285166265A5011996408 @default.
- W4285166265 hasAuthorship W4285166265A5021226854 @default.
- W4285166265 hasAuthorship W4285166265A5038352672 @default.
- W4285166265 hasAuthorship W4285166265A5048854087 @default.
- W4285166265 hasAuthorship W4285166265A5071882368 @default.
- W4285166265 hasAuthorship W4285166265A5085255934 @default.
- W4285166265 hasConcept C10138342 @default.
- W4285166265 hasConcept C105339364 @default.
- W4285166265 hasConcept C115903868 @default.
- W4285166265 hasConcept C119857082 @default.
- W4285166265 hasConcept C145460709 @default.
- W4285166265 hasConcept C150899416 @default.
- W4285166265 hasConcept C151730666 @default.
- W4285166265 hasConcept C153180895 @default.
- W4285166265 hasConcept C154945302 @default.
- W4285166265 hasConcept C162324750 @default.
- W4285166265 hasConcept C165696696 @default.
- W4285166265 hasConcept C2775945657 @default.
- W4285166265 hasConcept C2776151529 @default.
- W4285166265 hasConcept C2776214188 @default.
- W4285166265 hasConcept C2777267654 @default.
- W4285166265 hasConcept C2781238097 @default.
- W4285166265 hasConcept C31972630 @default.
- W4285166265 hasConcept C38652104 @default.
- W4285166265 hasConcept C41008148 @default.
- W4285166265 hasConcept C44154836 @default.
- W4285166265 hasConcept C86803240 @default.
- W4285166265 hasConcept C90509273 @default.
- W4285166265 hasConceptScore W4285166265C10138342 @default.
- W4285166265 hasConceptScore W4285166265C105339364 @default.
- W4285166265 hasConceptScore W4285166265C115903868 @default.
- W4285166265 hasConceptScore W4285166265C119857082 @default.
- W4285166265 hasConceptScore W4285166265C145460709 @default.
- W4285166265 hasConceptScore W4285166265C150899416 @default.
- W4285166265 hasConceptScore W4285166265C151730666 @default.
- W4285166265 hasConceptScore W4285166265C153180895 @default.
- W4285166265 hasConceptScore W4285166265C154945302 @default.
- W4285166265 hasConceptScore W4285166265C162324750 @default.
- W4285166265 hasConceptScore W4285166265C165696696 @default.
- W4285166265 hasConceptScore W4285166265C2775945657 @default.
- W4285166265 hasConceptScore W4285166265C2776151529 @default.
- W4285166265 hasConceptScore W4285166265C2776214188 @default.
- W4285166265 hasConceptScore W4285166265C2777267654 @default.
- W4285166265 hasConceptScore W4285166265C2781238097 @default.
- W4285166265 hasConceptScore W4285166265C31972630 @default.
- W4285166265 hasConceptScore W4285166265C38652104 @default.
- W4285166265 hasConceptScore W4285166265C41008148 @default.
- W4285166265 hasConceptScore W4285166265C44154836 @default.
- W4285166265 hasConceptScore W4285166265C86803240 @default.
- W4285166265 hasConceptScore W4285166265C90509273 @default.
- W4285166265 hasLocation W42851662651 @default.
- W4285166265 hasOpenAccess W4285166265 @default.
- W4285166265 hasPrimaryLocation W42851662651 @default.
- W4285166265 hasRelatedWork W1971759388 @default.
- W4285166265 hasRelatedWork W2007544051 @default.
- W4285166265 hasRelatedWork W2021186063 @default.
- W4285166265 hasRelatedWork W2025800131 @default.
- W4285166265 hasRelatedWork W2035456249 @default.
- W4285166265 hasRelatedWork W2061090284 @default.
- W4285166265 hasRelatedWork W2095705906 @default.
- W4285166265 hasRelatedWork W2129974284 @default.
- W4285166265 hasRelatedWork W2922421953 @default.
- W4285166265 hasRelatedWork W2975200075 @default.
- W4285166265 isParatext "false" @default.
- W4285166265 isRetracted "false" @default.
- W4285166265 workType "book-chapter" @default.