Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285168410> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4285168410 endingPage "2165" @default.
- W4285168410 startingPage "2161" @default.
- W4285168410 abstract "Many communications and sensing applications hinge on the detection of a signal in a noisy, interference-heavy environment. Signal processing theory yields techniques such as the generalized likelihood ratio test (GLRT) to perform detection when the received samples correspond to a linear observation model. Numerous practical applications exist, however, where the received signal has passed through a nonlinearity, causing significant performance degradation of the GLRT. In this work, we propose prepending the GLRT detector with a neural network classifier capable of identifying the particular nonlinear time samples in a received signal. We show that pre-processing received nonlinear signals using our trained classifier to eliminate excessively nonlinear samples (i) improves the detection performance of the GLRT on nonlinear signals and (ii) retains the theoretical guarantees provided by the GLRT on linear observation models for accurate signal detection." @default.
- W4285168410 created "2022-07-14" @default.
- W4285168410 creator A5001355478 @default.
- W4285168410 creator A5020399355 @default.
- W4285168410 creator A5066919384 @default.
- W4285168410 creator A5084897218 @default.
- W4285168410 date "2022-09-01" @default.
- W4285168410 modified "2023-09-23" @default.
- W4285168410 title "A Neural Network-Prepended GLRT Framework for Signal Detection Under Nonlinear Distortions" @default.
- W4285168410 cites W1959279866 @default.
- W4285168410 cites W1986921156 @default.
- W4285168410 cites W2118009818 @default.
- W4285168410 cites W2144366564 @default.
- W4285168410 cites W2158298975 @default.
- W4285168410 cites W2162920658 @default.
- W4285168410 cites W2963190722 @default.
- W4285168410 cites W2983867517 @default.
- W4285168410 cites W3092084633 @default.
- W4285168410 cites W3092603992 @default.
- W4285168410 cites W3155185403 @default.
- W4285168410 cites W3180983650 @default.
- W4285168410 cites W3200744636 @default.
- W4285168410 cites W4206775968 @default.
- W4285168410 cites W4237156741 @default.
- W4285168410 doi "https://doi.org/10.1109/lcomm.2022.3183971" @default.
- W4285168410 hasPublicationYear "2022" @default.
- W4285168410 type Work @default.
- W4285168410 citedByCount "0" @default.
- W4285168410 crossrefType "journal-article" @default.
- W4285168410 hasAuthorship W4285168410A5001355478 @default.
- W4285168410 hasAuthorship W4285168410A5020399355 @default.
- W4285168410 hasAuthorship W4285168410A5066919384 @default.
- W4285168410 hasAuthorship W4285168410A5084897218 @default.
- W4285168410 hasBestOaLocation W42851684102 @default.
- W4285168410 hasConcept C104267543 @default.
- W4285168410 hasConcept C105795698 @default.
- W4285168410 hasConcept C11413529 @default.
- W4285168410 hasConcept C121332964 @default.
- W4285168410 hasConcept C137270730 @default.
- W4285168410 hasConcept C153180895 @default.
- W4285168410 hasConcept C154945302 @default.
- W4285168410 hasConcept C158622935 @default.
- W4285168410 hasConcept C199360897 @default.
- W4285168410 hasConcept C2779843651 @default.
- W4285168410 hasConcept C28490314 @default.
- W4285168410 hasConcept C33923547 @default.
- W4285168410 hasConcept C41008148 @default.
- W4285168410 hasConcept C50151734 @default.
- W4285168410 hasConcept C50644808 @default.
- W4285168410 hasConcept C554190296 @default.
- W4285168410 hasConcept C62520636 @default.
- W4285168410 hasConcept C76155785 @default.
- W4285168410 hasConcept C9483764 @default.
- W4285168410 hasConcept C94915269 @default.
- W4285168410 hasConceptScore W4285168410C104267543 @default.
- W4285168410 hasConceptScore W4285168410C105795698 @default.
- W4285168410 hasConceptScore W4285168410C11413529 @default.
- W4285168410 hasConceptScore W4285168410C121332964 @default.
- W4285168410 hasConceptScore W4285168410C137270730 @default.
- W4285168410 hasConceptScore W4285168410C153180895 @default.
- W4285168410 hasConceptScore W4285168410C154945302 @default.
- W4285168410 hasConceptScore W4285168410C158622935 @default.
- W4285168410 hasConceptScore W4285168410C199360897 @default.
- W4285168410 hasConceptScore W4285168410C2779843651 @default.
- W4285168410 hasConceptScore W4285168410C28490314 @default.
- W4285168410 hasConceptScore W4285168410C33923547 @default.
- W4285168410 hasConceptScore W4285168410C41008148 @default.
- W4285168410 hasConceptScore W4285168410C50151734 @default.
- W4285168410 hasConceptScore W4285168410C50644808 @default.
- W4285168410 hasConceptScore W4285168410C554190296 @default.
- W4285168410 hasConceptScore W4285168410C62520636 @default.
- W4285168410 hasConceptScore W4285168410C76155785 @default.
- W4285168410 hasConceptScore W4285168410C9483764 @default.
- W4285168410 hasConceptScore W4285168410C94915269 @default.
- W4285168410 hasFunder F4320332503 @default.
- W4285168410 hasIssue "9" @default.
- W4285168410 hasLocation W42851684101 @default.
- W4285168410 hasLocation W42851684102 @default.
- W4285168410 hasOpenAccess W4285168410 @default.
- W4285168410 hasPrimaryLocation W42851684101 @default.
- W4285168410 hasRelatedWork W2010008579 @default.
- W4285168410 hasRelatedWork W2034528846 @default.
- W4285168410 hasRelatedWork W2058714384 @default.
- W4285168410 hasRelatedWork W2061925976 @default.
- W4285168410 hasRelatedWork W2130484222 @default.
- W4285168410 hasRelatedWork W2144158572 @default.
- W4285168410 hasRelatedWork W2168826161 @default.
- W4285168410 hasRelatedWork W2187655553 @default.
- W4285168410 hasRelatedWork W2389982739 @default.
- W4285168410 hasRelatedWork W2393982272 @default.
- W4285168410 hasVolume "26" @default.
- W4285168410 isParatext "false" @default.
- W4285168410 isRetracted "false" @default.
- W4285168410 workType "article" @default.