Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285171046> ?p ?o ?g. }
- W4285171046 endingPage "419" @default.
- W4285171046 startingPage "405" @default.
- W4285171046 abstract "Cardiovascular disease is one of the important diseases endangering human health. Arrhythmia is an important symptom of cardiovascular disease, and ECG is the main diagnostic basis of arrhythmia. At present, in the algorithm research of ECG classification and recognition, due to the small number of samples collected from abnormal signals, the characteristics of abnormal ECG signals can not be well learned, resulting in the low recognition accuracy. This paper proposes an improved Generative Adversarial Network model to enhance the data of a few categories of ECG signals, and then constructs Resnet-seq2seq classification model for classification and recognition. The Generative Adversarial Network uses the game between generator and discriminator to learn the characteristics of a small number of samples. When the Nash equilibrium is reached, the generator automatically generate ECG samples with high similarity to the original data. Resnet network structure learns the features of the ECG signal after data enhancement, and then sends the feature vectors into the seq2seq model for classification and recognition. This paper uses the pattern between patients to divide the data set, and takes the data set after data enhancement as the training set. The results show that the data enhancement based on GAN can effectively improve the classification effect of ECG signals, and the overall classification accuracy is 98.09%, especially in S and F categories." @default.
- W4285171046 created "2022-07-14" @default.
- W4285171046 creator A5008456610 @default.
- W4285171046 creator A5041121788 @default.
- W4285171046 creator A5051335790 @default.
- W4285171046 creator A5064663972 @default.
- W4285171046 creator A5081458106 @default.
- W4285171046 date "2022-01-01" @default.
- W4285171046 modified "2023-09-30" @default.
- W4285171046 title "Research on ECG Signal Classification Based on Data Enhancement of Generative Adversarial Network" @default.
- W4285171046 cites W1981453340 @default.
- W4285171046 cites W1982075700 @default.
- W4285171046 cites W2344068978 @default.
- W4285171046 cites W2888491225 @default.
- W4285171046 cites W2905877654 @default.
- W4285171046 cites W2918888265 @default.
- W4285171046 cites W2967341839 @default.
- W4285171046 cites W2969771517 @default.
- W4285171046 cites W2974952570 @default.
- W4285171046 cites W2983593322 @default.
- W4285171046 cites W2999945891 @default.
- W4285171046 cites W3012208788 @default.
- W4285171046 cites W3022151847 @default.
- W4285171046 cites W3026476075 @default.
- W4285171046 cites W3081529385 @default.
- W4285171046 cites W3095608938 @default.
- W4285171046 cites W3123413998 @default.
- W4285171046 cites W3143061591 @default.
- W4285171046 cites W3173947869 @default.
- W4285171046 cites W3197424138 @default.
- W4285171046 cites W3209980376 @default.
- W4285171046 cites W4200312906 @default.
- W4285171046 cites W4255978756 @default.
- W4285171046 doi "https://doi.org/10.1007/978-3-031-06794-5_33" @default.
- W4285171046 hasPublicationYear "2022" @default.
- W4285171046 type Work @default.
- W4285171046 citedByCount "2" @default.
- W4285171046 countsByYear W42851710462023 @default.
- W4285171046 crossrefType "book-chapter" @default.
- W4285171046 hasAuthorship W4285171046A5008456610 @default.
- W4285171046 hasAuthorship W4285171046A5041121788 @default.
- W4285171046 hasAuthorship W4285171046A5051335790 @default.
- W4285171046 hasAuthorship W4285171046A5064663972 @default.
- W4285171046 hasAuthorship W4285171046A5081458106 @default.
- W4285171046 hasConcept C103278499 @default.
- W4285171046 hasConcept C115961682 @default.
- W4285171046 hasConcept C119857082 @default.
- W4285171046 hasConcept C121332964 @default.
- W4285171046 hasConcept C124101348 @default.
- W4285171046 hasConcept C138885662 @default.
- W4285171046 hasConcept C153180895 @default.
- W4285171046 hasConcept C154945302 @default.
- W4285171046 hasConcept C163258240 @default.
- W4285171046 hasConcept C177264268 @default.
- W4285171046 hasConcept C199360897 @default.
- W4285171046 hasConcept C2776401178 @default.
- W4285171046 hasConcept C2779803651 @default.
- W4285171046 hasConcept C2779843651 @default.
- W4285171046 hasConcept C2780992000 @default.
- W4285171046 hasConcept C41008148 @default.
- W4285171046 hasConcept C41895202 @default.
- W4285171046 hasConcept C58489278 @default.
- W4285171046 hasConcept C62520636 @default.
- W4285171046 hasConcept C76155785 @default.
- W4285171046 hasConcept C94915269 @default.
- W4285171046 hasConceptScore W4285171046C103278499 @default.
- W4285171046 hasConceptScore W4285171046C115961682 @default.
- W4285171046 hasConceptScore W4285171046C119857082 @default.
- W4285171046 hasConceptScore W4285171046C121332964 @default.
- W4285171046 hasConceptScore W4285171046C124101348 @default.
- W4285171046 hasConceptScore W4285171046C138885662 @default.
- W4285171046 hasConceptScore W4285171046C153180895 @default.
- W4285171046 hasConceptScore W4285171046C154945302 @default.
- W4285171046 hasConceptScore W4285171046C163258240 @default.
- W4285171046 hasConceptScore W4285171046C177264268 @default.
- W4285171046 hasConceptScore W4285171046C199360897 @default.
- W4285171046 hasConceptScore W4285171046C2776401178 @default.
- W4285171046 hasConceptScore W4285171046C2779803651 @default.
- W4285171046 hasConceptScore W4285171046C2779843651 @default.
- W4285171046 hasConceptScore W4285171046C2780992000 @default.
- W4285171046 hasConceptScore W4285171046C41008148 @default.
- W4285171046 hasConceptScore W4285171046C41895202 @default.
- W4285171046 hasConceptScore W4285171046C58489278 @default.
- W4285171046 hasConceptScore W4285171046C62520636 @default.
- W4285171046 hasConceptScore W4285171046C76155785 @default.
- W4285171046 hasConceptScore W4285171046C94915269 @default.
- W4285171046 hasLocation W42851710461 @default.
- W4285171046 hasOpenAccess W4285171046 @default.
- W4285171046 hasPrimaryLocation W42851710461 @default.
- W4285171046 hasRelatedWork W1497005071 @default.
- W4285171046 hasRelatedWork W2374959876 @default.
- W4285171046 hasRelatedWork W2382607599 @default.
- W4285171046 hasRelatedWork W2546942002 @default.
- W4285171046 hasRelatedWork W2903477224 @default.
- W4285171046 hasRelatedWork W2970216048 @default.
- W4285171046 hasRelatedWork W2999741285 @default.
- W4285171046 hasRelatedWork W3025331699 @default.
- W4285171046 hasRelatedWork W3194684016 @default.