Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285173622> ?p ?o ?g. }
- W4285173622 endingPage "18" @default.
- W4285173622 startingPage "1" @default.
- W4285173622 abstract "The presence of shadows has always been a troublesome problem in image processing and can also affect spectral unmixing with hyperspectral remote sensing images. Traditional unmixing algorithms regard shadows as a special type of ground cover, so they can only estimate real materials’ sunlit abundances, and materials with low reflectance may be wrongly recognized as shadows. Without regarding shadows as ground cover, we propose a supervised nonlinear unmixing method to accurately estimate real materials’ total abundances inside and outside shadow areas. First, sunlit and shadowed constituents in every pixel of an image are modeled explicitly and integrated by a tractable bilinear mixing mechanism. Second, based on the constructed model, the strong sparsity of shadow spatial distribution and the spatial correlation among neighboring material abundances are exploited to produce a constrained optimization problem for nonlinear unmixing. Third, an existing unmixing framework based on particle swarm optimization is extended to calculate unknown variables of the optimization problem. Three alternatingly updated swarms using improved dimensional division strategies are designed to accordingly address the unmixing subproblems with respect to variables to be estimated during the solution search. This process has the potential to be generalized to solve complex nonlinear unmixing optimization problems. Finally, model-based simulated data, virtual citrus orchard data, and real hyperspectral remote sensing images are used in experiments to evaluate the proposed method and compare it with traditional and state-of-the-art nonlinear unmixing algorithms. Experimental results verify that the proposed method can achieve acceptable unmixing performance when managing nonlinear mixing effects and shadows." @default.
- W4285173622 created "2022-07-14" @default.
- W4285173622 creator A5046815454 @default.
- W4285173622 date "2022-01-01" @default.
- W4285173622 modified "2023-09-27" @default.
- W4285173622 title "Supervised Nonlinear Hyperspectral Unmixing With Automatic Shadow Compensation Using Multiswarm Particle Swarm Optimization" @default.
- W4285173622 cites W1946710007 @default.
- W4285173622 cites W1957094454 @default.
- W4285173622 cites W1963659868 @default.
- W4285173622 cites W1964570608 @default.
- W4285173622 cites W1977824599 @default.
- W4285173622 cites W1980525259 @default.
- W4285173622 cites W1999791745 @default.
- W4285173622 cites W2011315899 @default.
- W4285173622 cites W2015635283 @default.
- W4285173622 cites W2019274094 @default.
- W4285173622 cites W2023791222 @default.
- W4285173622 cites W2024423687 @default.
- W4285173622 cites W2042626896 @default.
- W4285173622 cites W2042737021 @default.
- W4285173622 cites W2069174295 @default.
- W4285173622 cites W2071249186 @default.
- W4285173622 cites W2078222544 @default.
- W4285173622 cites W2088259770 @default.
- W4285173622 cites W2109064591 @default.
- W4285173622 cites W2113724293 @default.
- W4285173622 cites W2127062304 @default.
- W4285173622 cites W2135046866 @default.
- W4285173622 cites W2139047226 @default.
- W4285173622 cites W2140216497 @default.
- W4285173622 cites W2148907781 @default.
- W4285173622 cites W2152195021 @default.
- W4285173622 cites W2156517622 @default.
- W4285173622 cites W2157321686 @default.
- W4285173622 cites W2163886442 @default.
- W4285173622 cites W2555818261 @default.
- W4285173622 cites W2567880344 @default.
- W4285173622 cites W2599078391 @default.
- W4285173622 cites W2600941572 @default.
- W4285173622 cites W2605997226 @default.
- W4285173622 cites W2624852066 @default.
- W4285173622 cites W2761336374 @default.
- W4285173622 cites W2764108700 @default.
- W4285173622 cites W2771666798 @default.
- W4285173622 cites W2801375052 @default.
- W4285173622 cites W2811009023 @default.
- W4285173622 cites W2885850997 @default.
- W4285173622 cites W2911999741 @default.
- W4285173622 cites W2921805329 @default.
- W4285173622 cites W2950964158 @default.
- W4285173622 cites W2963069169 @default.
- W4285173622 cites W2966297010 @default.
- W4285173622 cites W3020160254 @default.
- W4285173622 cites W3028040906 @default.
- W4285173622 cites W3036679688 @default.
- W4285173622 cites W3100094835 @default.
- W4285173622 cites W3107993365 @default.
- W4285173622 cites W3118389845 @default.
- W4285173622 cites W3122463936 @default.
- W4285173622 cites W4233760599 @default.
- W4285173622 doi "https://doi.org/10.1109/tgrs.2022.3177648" @default.
- W4285173622 hasPublicationYear "2022" @default.
- W4285173622 type Work @default.
- W4285173622 citedByCount "4" @default.
- W4285173622 countsByYear W42851736222022 @default.
- W4285173622 countsByYear W42851736222023 @default.
- W4285173622 crossrefType "journal-article" @default.
- W4285173622 hasAuthorship W4285173622A5046815454 @default.
- W4285173622 hasConcept C11413529 @default.
- W4285173622 hasConcept C117797892 @default.
- W4285173622 hasConcept C121332964 @default.
- W4285173622 hasConcept C137836250 @default.
- W4285173622 hasConcept C153180895 @default.
- W4285173622 hasConcept C154945302 @default.
- W4285173622 hasConcept C15744967 @default.
- W4285173622 hasConcept C158622935 @default.
- W4285173622 hasConcept C159078339 @default.
- W4285173622 hasConcept C160633673 @default.
- W4285173622 hasConcept C205203396 @default.
- W4285173622 hasConcept C205649164 @default.
- W4285173622 hasConcept C31972630 @default.
- W4285173622 hasConcept C41008148 @default.
- W4285173622 hasConcept C542102704 @default.
- W4285173622 hasConcept C62520636 @default.
- W4285173622 hasConcept C62649853 @default.
- W4285173622 hasConcept C85617194 @default.
- W4285173622 hasConceptScore W4285173622C11413529 @default.
- W4285173622 hasConceptScore W4285173622C117797892 @default.
- W4285173622 hasConceptScore W4285173622C121332964 @default.
- W4285173622 hasConceptScore W4285173622C137836250 @default.
- W4285173622 hasConceptScore W4285173622C153180895 @default.
- W4285173622 hasConceptScore W4285173622C154945302 @default.
- W4285173622 hasConceptScore W4285173622C15744967 @default.
- W4285173622 hasConceptScore W4285173622C158622935 @default.
- W4285173622 hasConceptScore W4285173622C159078339 @default.
- W4285173622 hasConceptScore W4285173622C160633673 @default.
- W4285173622 hasConceptScore W4285173622C205203396 @default.
- W4285173622 hasConceptScore W4285173622C205649164 @default.